IDEAS home Printed from https://ideas.repec.org/a/plo/pgen00/1006581.html
   My bibliography  Save this article

Differences in the rare variant spectrum among human populations

Author

Listed:
  • Iain Mathieson
  • David Reich

Abstract

Mutations occur at vastly different rates across the genome, and populations, leading to differences in the spectrum of segregating polymorphisms. Here, we investigate variation in the rare variant spectrum in a sample of human genomes representing all major world populations. We find at least two distinct signatures of variation. One, consistent with a previously reported signature is characterized by an increased rate of TCC>TTC mutations in people from Western Eurasia and South Asia, likely related to differences in the rate, or efficiency of repair, of damage due to deamination of methylated guanine. We describe the geographic extent of this signature and show that it is detectable in the genomes of ancient, but not archaic humans. The second signature is private to certain Native American populations, and is concentrated at CpG sites. We show that this signature is not driven by differences in the CpG mutation rate, but is a result of the fact that highly mutable CpG sites are more likely to undergo multiple independent mutations across human populations, and the spectrum of such mutations is highly sensitive to recent demography. Both of these effects dramatically affect the spectrum of rare variants across human populations, and should be taken into account when using mutational clocks to make inference about demography.Author summary: Genetic variation among humans is built up by a constant stream of new mutations. New mutations appear every generation because of unrepaired DNA damage, or copying errors in DNA replication. Differences between populations in the rate or types of mutations that appear are one of several factors that affect patterns of genetic variation. Here, we examined genomes from all major world populations, looking at patterns of variation to see whether different types of rare variant were more common in different parts of the world. We found two types of variant that had this property. The first is more common in Western Eurasia than in other parts of the world and seems to be related to an historical increase in the rate of a specific kind of mutation. The second type of variant–C>T changes at CpG sites–is more common in Native Americans, not because mutation rates are different, but because these mutations occur at a very high rate, and this kind of variation is very sensitive to differences in demographic history between populations. These results demonstrate the importance of considering both mutation and demography in the interpretation of genetic variation.

Suggested Citation

  • Iain Mathieson & David Reich, 2017. "Differences in the rare variant spectrum among human populations," PLOS Genetics, Public Library of Science, vol. 13(2), pages 1-17, February.
  • Handle: RePEc:plo:pgen00:1006581
    DOI: 10.1371/journal.pgen.1006581
    as

    Download full text from publisher

    File URL: https://journals.plos.org/plosgenetics/article?id=10.1371/journal.pgen.1006581
    Download Restriction: no

    File URL: https://journals.plos.org/plosgenetics/article/file?id=10.1371/journal.pgen.1006581&type=printable
    Download Restriction: no

    File URL: https://libkey.io/10.1371/journal.pgen.1006581?utm_source=ideas
    LibKey link: if access is restricted and if your library uses this service, LibKey will redirect you to where you can use your library subscription to access this item
    ---><---

    References listed on IDEAS

    as
    1. Augustine Kong & Michael L. Frigge & Gisli Masson & Soren Besenbacher & Patrick Sulem & Gisli Magnusson & Sigurjon A. Gudjonsson & Asgeir Sigurdsson & Aslaug Jonasdottir & Adalbjorg Jonasdottir & Wend, 2012. "Rate of de novo mutations and the importance of father’s age to disease risk," Nature, Nature, vol. 488(7412), pages 471-475, August.
    Full references (including those not matched with items on IDEAS)

    Most related items

    These are the items that most often cite the same works as this one and are cited by the same works as this one.
    1. Fiona A. Hagenbeek & Jana S. Hirzinger & Sophie Breunig & Susanne Bruins & Dmitry V. Kuznetsov & Kirsten Schut & Veronika V. Odintsova & Dorret I. Boomsma, 2023. "Maximizing the value of twin studies in health and behaviour," Nature Human Behaviour, Nature, vol. 7(6), pages 849-860, June.
    2. Jörn Bethune & April Kleppe & Søren Besenbacher, 2022. "A method to build extended sequence context models of point mutations and indels," Nature Communications, Nature, vol. 13(1), pages 1-10, December.
    3. Kitty Sherwood & Joseph C. Ward & Ignacio Soriano & Lynn Martin & Archie Campbell & Raheleh Rahbari & Ioannis Kafetzopoulos & Duncan Sproul & Andrew Green & Julian R. Sampson & Alan Donaldson & Kai-Re, 2023. "Germline de novo mutations in families with Mendelian cancer syndromes caused by defects in DNA repair," Nature Communications, Nature, vol. 14(1), pages 1-10, December.
    4. Wafeeq Abdelaziz, Asmaa & Ibrahim Abdelmageed, Reham, 2021. "An overview of non-genetic intellectual disability among Egyptian children and adolescents," Children and Youth Services Review, Elsevier, vol. 127(C).
    5. Marie Bernkopf & Ummi B. Abdullah & Stephen J. Bush & Katherine A. Wood & Sahar Ghaffari & Eleni Giannoulatou & Nils Koelling & Geoffrey J. Maher & Loïc M. Thibaut & Jonathan Williams & Edward M. Blai, 2023. "Personalized recurrence risk assessment following the birth of a child with a pathogenic de novo mutation," Nature Communications, Nature, vol. 14(1), pages 1-11, December.
    6. Hilary Cope & Edward R Ivimey-Cook & Jacob Moorad, 2022. "Triparental ageing in a laboratory population of an insect with maternal care [Male age alone predicts paternity success under sperm competition when effects of age and past mating effort are exper," Behavioral Ecology, International Society for Behavioral Ecology, vol. 33(6), pages 1123-1132.
    7. Kelley Harris & Rasmus Nielsen, 2013. "Inferring Demographic History from a Spectrum of Shared Haplotype Lengths," PLOS Genetics, Public Library of Science, vol. 9(6), pages 1-20, June.
    8. Laurent Excoffier & Isabelle Dupanloup & Emilia Huerta-Sánchez & Vitor C Sousa & Matthieu Foll, 2013. "Robust Demographic Inference from Genomic and SNP Data," PLOS Genetics, Public Library of Science, vol. 9(10), pages 1-17, October.
    9. Stephanie M. Bilinovich & Kristy Lewis & Barbara L. Thompson & Jeremy W. Prokop & Daniel B. Campbell, 2020. "Environmental Epigenetics of Diesel Particulate Matter Toxicogenomics," IJERPH, MDPI, vol. 17(20), pages 1-13, October.
    10. Dang Ton Nguyen & Hai Ha Nguyen & Thuy Duong Nguyen & Thi Thanh Hoa Nguyen & Kaoru Nakano & Kazuhiro Maejima & Aya Sasaki-Oku & Van Ba Nguyen & Duy Bac Nguyen & Bach Quang Le & Jing Hao Wong & Tatsuhi, 2018. "Whole Genome Sequencing of a Vietnamese Family from a Dioxin Contamination Hotspot Reveals Novel Variants in the Son with Undiagnosed Intellectual Disability," IJERPH, MDPI, vol. 15(12), pages 1-11, November.
    11. Tetsushi Sadakata & Yo Shinoda & Akira Sato & Hirotoshi Iguchi & Chiaki Ishii & Makoto Matsuo & Ryosuke Yamaga & Teiichi Furuichi, 2013. "Mouse Models of Mutations and Variations in Autism Spectrum Disorder-Associated Genes: Mice Expressing Caps2/Cadps2 Copy Number and Alternative Splicing Variants," IJERPH, MDPI, vol. 10(12), pages 1-19, November.
    12. Anouk E. J. Janssen & Rebekka M. Koeck & Rick Essers & Ping Cao & Wanwisa Dijk & Marion Drüsedau & Jeroen Meekels & Burcu Yaldiz & Maartje Vorst & Bart Koning & Debby M. E. I. Hellebrekers & Servi J. , 2024. "Clinical-grade whole genome sequencing-based haplarithmisis enables all forms of preimplantation genetic testing," Nature Communications, Nature, vol. 15(1), pages 1-15, December.
    13. Chunfeng Yun & Zhenjie Wang & Ping He & Chao Guo & Gong Chen & Xiaoying Zheng, 2016. "Prevalence and Parental Risk Factors for Speech Disability Associated with Cleft Palate in Chinese Children—A National Survey," IJERPH, MDPI, vol. 13(11), pages 1-8, November.

    More about this item

    Statistics

    Access and download statistics

    Corrections

    All material on this site has been provided by the respective publishers and authors. You can help correct errors and omissions. When requesting a correction, please mention this item's handle: RePEc:plo:pgen00:1006581. See general information about how to correct material in RePEc.

    If you have authored this item and are not yet registered with RePEc, we encourage you to do it here. This allows to link your profile to this item. It also allows you to accept potential citations to this item that we are uncertain about.

    If CitEc recognized a bibliographic reference but did not link an item in RePEc to it, you can help with this form .

    If you know of missing items citing this one, you can help us creating those links by adding the relevant references in the same way as above, for each refering item. If you are a registered author of this item, you may also want to check the "citations" tab in your RePEc Author Service profile, as there may be some citations waiting for confirmation.

    For technical questions regarding this item, or to correct its authors, title, abstract, bibliographic or download information, contact: plosgenetics (email available below). General contact details of provider: https://journals.plos.org/plosgenetics/ .

    Please note that corrections may take a couple of weeks to filter through the various RePEc services.

    IDEAS is a RePEc service. RePEc uses bibliographic data supplied by the respective publishers.