IDEAS home Printed from https://ideas.repec.org/a/plo/pgen00/1002640.html
   My bibliography  Save this article

Population Structure of Hispanics in the United States: The Multi-Ethnic Study of Atherosclerosis

Author

Listed:
  • Ani Manichaikul
  • Walter Palmas
  • Carlos J Rodriguez
  • Carmen A Peralta
  • Jasmin Divers
  • Xiuqing Guo
  • Wei-Min Chen
  • Quenna Wong
  • Kayleen Williams
  • Kathleen F Kerr
  • Kent D Taylor
  • Michael Y Tsai
  • Mark O Goodarzi
  • Michèle M Sale
  • Ana V Diez-Roux
  • Stephen S Rich
  • Jerome I Rotter
  • Josyf C Mychaleckyj

Abstract

Using ∼60,000 SNPs selected for minimal linkage disequilibrium, we perform population structure analysis of 1,374 unrelated Hispanic individuals from the Multi-Ethnic Study of Atherosclerosis (MESA), with self-identification corresponding to Central America (n = 93), Cuba (n = 50), the Dominican Republic (n = 203), Mexico (n = 708), Puerto Rico (n = 192), and South America (n = 111). By projection of principal components (PCs) of ancestry to samples from the HapMap phase III and the Human Genome Diversity Panel (HGDP), we show the first two PCs quantify the Caucasian, African, and Native American origins, while the third and fourth PCs bring out an axis that aligns with known South-to-North geographic location of HGDP Native American samples and further separates MESA Mexican versus Central/South American samples along the same axis. Using k-means clustering computed from the first four PCs, we define four subgroups of the MESA Hispanic cohort that show close agreement with self-identification, labeling the clusters as primarily Dominican/Cuban, Mexican, Central/South American, and Puerto Rican. To demonstrate our recommendations for genetic analysis in the MESA Hispanic cohort, we present pooled and stratified association analysis of triglycerides for selected SNPs in the LPL and TRIB1 gene regions, previously reported in GWAS of triglycerides in Caucasians but as yet unconfirmed in Hispanic populations. We report statistically significant evidence for genetic association in both genes, and we further demonstrate the importance of considering population substructure and genetic heterogeneity in genetic association studies performed in the United States Hispanic population. Author Summary: Using genotype data from about 60,000 distinct genetic markers, we examined population structure in 1,374 unrelated Hispanic individuals from the Multi-Ethnic Study of Atherosclerosis (MESA), with self-identification corresponding to Central America (n = 93), Cuba (n = 50), the Dominican Republic (n = 203), Mexico (n = 708), Puerto Rico (n = 192), and South America (n = 111). By comparing genetic ancestry of MESA Hispanic participants to reference samples representing worldwide diversity, we show major differences in ancestry of MESA Hispanics reflecting their Caucasian, African, and Native American origins, with finer differences corresponding to North-South geographic origins that separate MESA Mexican versus Central/South American samples. Based on our analysis, we define four subgroups of the MESA Hispanic cohort that show close agreement with the following self-identified regions of origin: Dominican/Cuban, Mexican, Central/South American, and Puerto Rican. We examine association of triglycerides with selected genetic markers, and we further demonstrate the importance of considering differences in genetic ancestry (or factors associated with genetic ancestry) when performing genetic studies of the United States Hispanic population.

Suggested Citation

  • Ani Manichaikul & Walter Palmas & Carlos J Rodriguez & Carmen A Peralta & Jasmin Divers & Xiuqing Guo & Wei-Min Chen & Quenna Wong & Kayleen Williams & Kathleen F Kerr & Kent D Taylor & Michael Y Tsai, 2012. "Population Structure of Hispanics in the United States: The Multi-Ethnic Study of Atherosclerosis," PLOS Genetics, Public Library of Science, vol. 8(4), pages 1-14, April.
  • Handle: RePEc:plo:pgen00:1002640
    DOI: 10.1371/journal.pgen.1002640
    as

    Download full text from publisher

    File URL: https://journals.plos.org/plosgenetics/article?id=10.1371/journal.pgen.1002640
    Download Restriction: no

    File URL: https://journals.plos.org/plosgenetics/article/file?id=10.1371/journal.pgen.1002640&type=printable
    Download Restriction: no

    File URL: https://libkey.io/10.1371/journal.pgen.1002640?utm_source=ideas
    LibKey link: if access is restricted and if your library uses this service, LibKey will redirect you to where you can use your library subscription to access this item
    ---><---

    References listed on IDEAS

    as
    1. Nick Patterson & Alkes L Price & David Reich, 2006. "Population Structure and Eigenanalysis," PLOS Genetics, Public Library of Science, vol. 2(12), pages 1-20, December.
    2. Zhaoming Wang & Allan Hildesheim & Sophia S Wang & Rolando Herrero & Paula Gonzalez & Laurie Burdette & Amy Hutchinson & Gilles Thomas & Stephen J Chanock & Kai Yu, 2010. "Genetic Admixture and Population Substructure in Guanacaste Costa Rica," PLOS ONE, Public Library of Science, vol. 5(10), pages 1-10, October.
    Full references (including those not matched with items on IDEAS)

    Most related items

    These are the items that most often cite the same works as this one and are cited by the same works as this one.
    1. Gyaneshwer Chaubey & Anurag Kadian & Saroj Bala & Vadlamudi Raghavendra Rao, 2015. "Genetic Affinity of the Bhil, Kol and Gond Mentioned in Epic Ramayana," PLOS ONE, Public Library of Science, vol. 10(6), pages 1-11, June.
    2. Estavoyer, Maxime & François, Olivier, 2022. "Theoretical analysis of principal components in an umbrella model of intraspecific evolution," Theoretical Population Biology, Elsevier, vol. 148(C), pages 11-21.
    3. Hyosik Jang & Ian M Ehrenreich, 2012. "Genome-Wide Characterization of Genetic Variation in the Unicellular, Green Alga Chlamydomonas reinhardtii," PLOS ONE, Public Library of Science, vol. 7(7), pages 1-9, July.
    4. Xiaofeng Cai & Xuepeng Sun & Chenxi Xu & Honghe Sun & Xiaoli Wang & Chenhui Ge & Zhonghua Zhang & Quanxi Wang & Zhangjun Fei & Chen Jiao & Quanhua Wang, 2021. "Genomic analyses provide insights into spinach domestication and the genetic basis of agronomic traits," Nature Communications, Nature, vol. 12(1), pages 1-12, December.
    5. Lee, Anthony J. & Hibbs, Courtney & Wright, Margaret J. & Martin, Nicholas G. & Keller, Matthew C. & Zietsch, Brendan P., 2017. "Assessing the accuracy of perceptions of intelligence based on heritable facial features," Intelligence, Elsevier, vol. 64(C), pages 1-8.
    6. Thompson Katherine L. & Linnen Catherine R. & Kubatko Laura, 2016. "Tree-based quantitative trait mapping in the presence of external covariates," Statistical Applications in Genetics and Molecular Biology, De Gruyter, vol. 15(6), pages 473-490, December.
    7. Jacobo Pardo-Seco & Alberto Gómez-Carballa & Jorge Amigo & Federico Martinón-Torres & Antonio Salas, 2014. "A Genome-Wide Study of Modern-Day Tuscans: Revisiting Herodotus's Theory on the Origin of the Etruscans," PLOS ONE, Public Library of Science, vol. 9(9), pages 1-11, September.
    8. Ilja M Nolte & Chris Wallace & Stephen J Newhouse & Daryl Waggott & Jingyuan Fu & Nicole Soranzo & Rhian Gwilliam & Panos Deloukas & Irina Savelieva & Dongling Zheng & Chrysoula Dalageorgou & Martin F, 2009. "Common Genetic Variation Near the Phospholamban Gene Is Associated with Cardiac Repolarisation: Meta-Analysis of Three Genome-Wide Association Studies," PLOS ONE, Public Library of Science, vol. 4(7), pages 1-10, July.
    9. Hoicheong Siu & Li Jin & Momiao Xiong, 2012. "Manifold Learning for Human Population Structure Studies," PLOS ONE, Public Library of Science, vol. 7(1), pages 1-18, January.
    10. Elodie Persyn & Richard Redon & Lise Bellanger & Christian Dina, 2018. "The impact of a fine-scale population stratification on rare variant association test results," PLOS ONE, Public Library of Science, vol. 13(12), pages 1-17, December.
    11. Andre Krumel Portella & Afroditi Papantoni & Catherine Paquet & Spencer Moore & Keri Shiels Rosch & Stewart Mostofsky & Richard S Lee & Kimberly R Smith & Robert Levitan & Patricia Pelufo Silveira & S, 2020. "Predicted DRD4 prefrontal gene expression moderates snack intake and stress perception in response to the environment in adolescents," PLOS ONE, Public Library of Science, vol. 15(6), pages 1-20, June.
    12. Lindsay Fernández-Rhodes & Jennifer R Malinowski & Yujie Wang & Ran Tao & Nathan Pankratz & Janina M Jeff & Sachiko Yoneyama & Cara L Carty & V Wendy Setiawan & Loic Le Marchand & Christopher Haiman &, 2018. "The genetic underpinnings of variation in ages at menarche and natural menopause among women from the multi-ethnic Population Architecture using Genomics and Epidemiology (PAGE) Study: A trans-ethnic ," PLOS ONE, Public Library of Science, vol. 13(7), pages 1-21, July.
    13. Peña-Malavera Andrea & Bruno Cecilia & Fernandez Elmer & Balzarini Monica, 2014. "Comparison of algorithms to infer genetic population structure from unlinked molecular markers," Statistical Applications in Genetics and Molecular Biology, De Gruyter, vol. 13(4), pages 391-402, August.
    14. Chi-Chun Liu & David Witonsky & Anna Gosling & Ju Hyeon Lee & Harald Ringbauer & Richard Hagan & Nisha Patel & Raphaela Stahl & John Novembre & Mark Aldenderfer & Christina Warinner & Anna Di Rienzo &, 2022. "Ancient genomes from the Himalayas illuminate the genetic history of Tibetans and their Tibeto-Burman speaking neighbors," Nature Communications, Nature, vol. 13(1), pages 1-14, December.
    15. Abhinav Thakral & John JW. Lee & Tianzhichao Hou & Katrina Hueniken & Tom Dudding & Mark Gormley & Shama Virani & Andrew Olshan & Brenda Diergaarde & Andrew R. Ness & Tim Waterboer & Karl Smith-Byrne , 2024. "Smoking and alcohol by HPV status in head and neck cancer: a Mendelian randomization study," Nature Communications, Nature, vol. 15(1), pages 1-9, December.
    16. Gad Abraham & Michael Inouye, 2014. "Fast Principal Component Analysis of Large-Scale Genome-Wide Data," PLOS ONE, Public Library of Science, vol. 9(4), pages 1-5, April.
    17. Zhao Huaqing & Rebbeck Timothy R. & Mitra Nandita, 2012. "Analyzing Genetic Association Studies with an Extended Propensity Score Approach," Statistical Applications in Genetics and Molecular Biology, De Gruyter, vol. 11(5), pages 1-24, October.
    18. Diana Chang & Alon Keinan, 2014. "Principal Component Analysis Characterizes Shared Pathogenetics from Genome-Wide Association Studies," PLOS Computational Biology, Public Library of Science, vol. 10(9), pages 1-14, September.
    19. Emile R Chimusa & Michelle Daya & Marlo Möller & Raj Ramesar & Brenna M Henn & Paul D van Helden & Nicola J Mulder & Eileen G Hoal, 2013. "Determining Ancestry Proportions in Complex Admixture Scenarios in South Africa Using a Novel Proxy Ancestry Selection Method," PLOS ONE, Public Library of Science, vol. 8(9), pages 1-14, September.
    20. Morten Dybdahl Krebs & Gonçalo Espregueira Themudo & Michael Eriksen Benros & Ole Mors & Anders D. Børglum & David Hougaard & Preben Bo Mortensen & Merete Nordentoft & Michael J. Gandal & Chun Chieh F, 2021. "Associations between patterns in comorbid diagnostic trajectories of individuals with schizophrenia and etiological factors," Nature Communications, Nature, vol. 12(1), pages 1-12, December.

    More about this item

    Statistics

    Access and download statistics

    Corrections

    All material on this site has been provided by the respective publishers and authors. You can help correct errors and omissions. When requesting a correction, please mention this item's handle: RePEc:plo:pgen00:1002640. See general information about how to correct material in RePEc.

    If you have authored this item and are not yet registered with RePEc, we encourage you to do it here. This allows to link your profile to this item. It also allows you to accept potential citations to this item that we are uncertain about.

    If CitEc recognized a bibliographic reference but did not link an item in RePEc to it, you can help with this form .

    If you know of missing items citing this one, you can help us creating those links by adding the relevant references in the same way as above, for each refering item. If you are a registered author of this item, you may also want to check the "citations" tab in your RePEc Author Service profile, as there may be some citations waiting for confirmation.

    For technical questions regarding this item, or to correct its authors, title, abstract, bibliographic or download information, contact: plosgenetics (email available below). General contact details of provider: https://journals.plos.org/plosgenetics/ .

    Please note that corrections may take a couple of weeks to filter through the various RePEc services.

    IDEAS is a RePEc service. RePEc uses bibliographic data supplied by the respective publishers.