IDEAS home Printed from https://ideas.repec.org/a/plo/pgen00/1001177.html
   My bibliography  Save this article

Genome-Wide Association Study of Blood Pressure Extremes Identifies Variant near UMOD Associated with Hypertension

Author

Listed:
  • Sandosh Padmanabhan
  • Olle Melander
  • Toby Johnson
  • Anna Maria Di Blasio
  • Wai K Lee
  • Davide Gentilini
  • Claire E Hastie
  • Cristina Menni
  • Maria Cristina Monti
  • Christian Delles
  • Stewart Laing
  • Barbara Corso
  • Gerjan Navis
  • Arjan J Kwakernaak
  • Pim van der Harst
  • Murielle Bochud
  • Marc Maillard
  • Michel Burnier
  • Thomas Hedner
  • Sverre Kjeldsen
  • Björn Wahlstrand
  • Marketa Sjögren
  • Cristiano Fava
  • Martina Montagnana
  • Elisa Danese
  • Ole Torffvit
  • Bo Hedblad
  • Harold Snieder
  • John M C Connell
  • Morris Brown
  • Nilesh J Samani
  • Martin Farrall
  • Giancarlo Cesana
  • Giuseppe Mancia
  • Stefano Signorini
  • Guido Grassi
  • Susana Eyheramendy
  • H Erich Wichmann
  • Maris Laan
  • David P Strachan
  • Peter Sever
  • Denis Colm Shields
  • Alice Stanton
  • Peter Vollenweider
  • Alexander Teumer
  • Henry Völzke
  • Rainer Rettig
  • Christopher Newton-Cheh
  • Pankaj Arora
  • Feng Zhang
  • Nicole Soranzo
  • Timothy D Spector
  • Gavin Lucas
  • Sekar Kathiresan
  • David S Siscovick
  • Jian'an Luan
  • Ruth J F Loos
  • Nicholas J Wareham
  • Brenda W Penninx
  • Ilja M Nolte
  • Martin McBride
  • William H Miller
  • Stuart A Nicklin
  • Andrew H Baker
  • Delyth Graham
  • Robert A McDonald
  • Jill P Pell
  • Naveed Sattar
  • Paul Welsh
  • Global BPgen Consortium
  • Patricia Munroe
  • Mark J Caulfield
  • Alberto Zanchetti
  • Anna F Dominiczak

Abstract

Hypertension is a heritable and major contributor to the global burden of disease. The sum of rare and common genetic variants robustly identified so far explain only 1%–2% of the population variation in BP and hypertension. This suggests the existence of more undiscovered common variants. We conducted a genome-wide association study in 1,621 hypertensive cases and 1,699 controls and follow-up validation analyses in 19,845 cases and 16,541 controls using an extreme case-control design. We identified a locus on chromosome 16 in the 5′ region of Uromodulin (UMOD; rs13333226, combined P value of 3.6×10−11). The minor G allele is associated with a lower risk of hypertension (OR [95%CI]: 0.87 [0.84–0.91]), reduced urinary uromodulin excretion, better renal function; and each copy of the G allele is associated with a 7.7% reduction in risk of CVD events after adjusting for age, sex, BMI, and smoking status (H.R. = 0.923, 95% CI 0.860–0.991; p = 0.027). In a subset of 13,446 individuals with estimated glomerular filtration rate (eGFR) measurements, we show that rs13333226 is independently associated with hypertension (unadjusted for eGFR: 0.89 [0.83–0.96], p = 0.004; after eGFR adjustment: 0.89 [0.83–0.96], p = 0.003). In clinical functional studies, we also consistently show the minor G allele is associated with lower urinary uromodulin excretion. The exclusive expression of uromodulin in the thick portion of the ascending limb of Henle suggests a putative role of this variant in hypertension through an effect on sodium homeostasis. The newly discovered UMOD locus for hypertension has the potential to give new insights into the role of uromodulin in BP regulation and to identify novel drugable targets for reducing cardiovascular risk.Author Summary: Hypertension is the leading contributor to global mortality with a global prevalence of 26.4% in 2000, projected to increase to 29.2% by 2025. While 50%–60% of population variation in blood pressure can be attributable to additive genetic factors, all the genetic variants robustly identified so far explain only 1%–2% of the population variance indicating the presence of additional undiscovered risk variants. Using an extreme case-control strategy, we have discovered a SNP in the promoter region of the uromodulin gene (UMOD) to be associated with hypertension (minor allele protective against hypertension). We then validated this association using large-scale population and case-control studies, where similar extreme criteria for selection of cases and controls have been used (21,466 cases and 18,240 controls). As the locus was related to uromodulin, a protein exclusively expressed in the kidneys, we show that the association is independent of renal dysfunction. We also show preliminary evidence that the SNP allele which is protective against hypertension is also protective against cardiovascular events in 26,654 Swedish subjects followed-up for 12 years. The newly discovered UMOD locus for hypertension has the potential to give unique insights into the role of uromodulin in BP regulation and to identify novel drugable targets.

Suggested Citation

  • Sandosh Padmanabhan & Olle Melander & Toby Johnson & Anna Maria Di Blasio & Wai K Lee & Davide Gentilini & Claire E Hastie & Cristina Menni & Maria Cristina Monti & Christian Delles & Stewart Laing & , 2010. "Genome-Wide Association Study of Blood Pressure Extremes Identifies Variant near UMOD Associated with Hypertension," PLOS Genetics, Public Library of Science, vol. 6(10), pages 1-11, October.
  • Handle: RePEc:plo:pgen00:1001177
    DOI: 10.1371/journal.pgen.1001177
    as

    Download full text from publisher

    File URL: https://journals.plos.org/plosgenetics/article?id=10.1371/journal.pgen.1001177
    Download Restriction: no

    File URL: https://journals.plos.org/plosgenetics/article/file?id=10.1371/journal.pgen.1001177&type=printable
    Download Restriction: no

    File URL: https://libkey.io/10.1371/journal.pgen.1001177?utm_source=ideas
    LibKey link: if access is restricted and if your library uses this service, LibKey will redirect you to where you can use your library subscription to access this item
    ---><---

    References listed on IDEAS

    as
    1. B. Devlin & Kathryn Roeder, 1999. "Genomic Control for Association Studies," Biometrics, The International Biometric Society, vol. 55(4), pages 997-1004, December.
    Full references (including those not matched with items on IDEAS)

    Citations

    Citations are extracted by the CitEc Project, subscribe to its RSS feed for this item.
    as


    Cited by:

    1. Beáta Soltész & Péter Pikó & János Sándor & Zsigmond Kósa & Róza Ádány & Szilvia Fiatal, 2020. "The genetic risk for hypertension is lower among the Hungarian Roma population compared to the general population," PLOS ONE, Public Library of Science, vol. 15(6), pages 1-17, June.
    2. Cornelia Then & Barbara Thorand & Holger L Then & Christa Meisinger & Margit Heier & Annette Peters & Wolfgang Koenig & Wolfgang Rathmann & Martin Bidlingmaier & Andreas Lechner & Martin Reincke & Jür, 2020. "Serum uromodulin is inversely associated with arterial hypertension and the vasoconstrictive prohormone CT-proET-1 in the population-based KORA F4 study," PLOS ONE, Public Library of Science, vol. 15(8), pages 1-12, August.
    3. Jingjing Zhou & Yuqing Chen & Ying Liu & Sufang Shi & Suxia Wang & Xueying Li & Hong Zhang & Haiyan Wang, 2013. "Urinary Uromodulin Excretion Predicts Progression of Chronic Kidney Disease Resulting from IgA Nephropathy," PLOS ONE, Public Library of Science, vol. 8(8), pages 1-6, August.
    4. Frank Konietschke & Ondrej Libiger & Ludwig A Hothorn, 2012. "Nonparametric Evaluation of Quantitative Traits in Population-Based Association Studies when the Genetic Model is Unknown," PLOS ONE, Public Library of Science, vol. 7(2), pages 1-10, February.

    Most related items

    These are the items that most often cite the same works as this one and are cited by the same works as this one.
    1. Lei Zhang & Yu-Fang Pei & Jian Li & Christopher J Papasian & Hong-Wen Deng, 2009. "Univariate/Multivariate Genome-Wide Association Scans Using Data from Families and Unrelated Samples," PLOS ONE, Public Library of Science, vol. 4(8), pages 1-12, August.
    2. Dominic Holland & Oleksandr Frei & Rahul Desikan & Chun-Chieh Fan & Alexey A Shadrin & Olav B Smeland & V S Sundar & Paul Thompson & Ole A Andreassen & Anders M Dale, 2020. "Beyond SNP heritability: Polygenicity and discoverability of phenotypes estimated with a univariate Gaussian mixture model," PLOS Genetics, Public Library of Science, vol. 16(5), pages 1-30, May.
    3. Vincent Michaud & Eulalie Lasseaux & David J. Green & Dave T. Gerrard & Claudio Plaisant & Tomas Fitzgerald & Ewan Birney & Benoît Arveiler & Graeme C. Black & Panagiotis I. Sergouniotis, 2022. "The contribution of common regulatory and protein-coding TYR variants to the genetic architecture of albinism," Nature Communications, Nature, vol. 13(1), pages 1-8, December.
    4. Natalie DeForest & Yuqi Wang & Zhiyi Zhu & Jacqueline S. Dron & Ryan Koesterer & Pradeep Natarajan & Jason Flannick & Tiffany Amariuta & Gina M. Peloso & Amit R. Majithia, 2024. "Genome-wide discovery and integrative genomic characterization of insulin resistance loci using serum triglycerides to HDL-cholesterol ratio as a proxy," Nature Communications, Nature, vol. 15(1), pages 1-17, December.
    5. Parsa Akbari & Dragana Vuckovic & Luca Stefanucci & Tao Jiang & Kousik Kundu & Roman Kreuzhuber & Erik L. Bao & Janine H. Collins & Kate Downes & Luigi Grassi & Jose A. Guerrero & Stephen Kaptoge & Ju, 2023. "A genome-wide association study of blood cell morphology identifies cellular proteins implicated in disease aetiology," Nature Communications, Nature, vol. 14(1), pages 1-19, December.
    6. Gang Zheng & Zhaohai Li & Mitchell H. Gail & Joseph L. Gastwirth, 2010. "Impact of Population Substructure on Trend Tests for Genetic Case–Control Association Studies," Biometrics, The International Biometric Society, vol. 66(1), pages 196-204, March.
    7. Jakris Eu-ahsunthornwattana & E Nancy Miller & Michaela Fakiola & Wellcome Trust Case Control Consortium 2 & Selma M B Jeronimo & Jenefer M Blackwell & Heather J Cordell, 2014. "Comparison of Methods to Account for Relatedness in Genome-Wide Association Studies with Family-Based Data," PLOS Genetics, Public Library of Science, vol. 10(7), pages 1-20, July.
    8. Jianzhong Ma & Christopher I Amos, 2010. "Theoretical Formulation of Principal Components Analysis to Detect and Correct for Population Stratification," PLOS ONE, Public Library of Science, vol. 5(9), pages 1-14, September.
    9. Claire L Simpson & Robert Wojciechowski & Konrad Oexle & Federico Murgia & Laura Portas & Xiaohui Li & Virginie J M Verhoeven & Veronique Vitart & Maria Schache & S Mohsen Hosseini & Pirro G Hysi & Le, 2014. "Genome-Wide Meta-Analysis of Myopia and Hyperopia Provides Evidence for Replication of 11 Loci," PLOS ONE, Public Library of Science, vol. 9(9), pages 1-19, September.
    10. Matthieu Bouaziz & Christophe Ambroise & Mickael Guedj, 2011. "Accounting for Population Stratification in Practice: A Comparison of the Main Strategies Dedicated to Genome-Wide Association Studies," PLOS ONE, Public Library of Science, vol. 6(12), pages 1-13, December.
    11. Aditi Shendre & Howard W Wiener & Marguerite R Irvin & Bradley E Aouizerat & Edgar T Overton & Jason Lazar & Chenglong Liu & Howard N Hodis & Nita A Limdi & Kathleen M Weber & Stephen J Gange & Degui , 2017. "Genome-wide admixture and association study of subclinical atherosclerosis in the Women’s Interagency HIV Study (WIHS)," PLOS ONE, Public Library of Science, vol. 12(12), pages 1-23, December.
    12. Li Shaoyu & Lu Qing & Fu Wenjiang & Romero Roberto & Cui Yuehua, 2009. "A Regularized Regression Approach for Dissecting Genetic Conflicts that Increase Disease Risk in Pregnancy," Statistical Applications in Genetics and Molecular Biology, De Gruyter, vol. 8(1), pages 1-30, October.
    13. Warrington Nicole M. & Tilling Kate & Howe Laura D. & Paternoster Lavinia & Pennell Craig E. & Wu Yan Yan & Briollais Laurent, 2014. "Robustness of the linear mixed effects model to error distribution assumptions and the consequences for genome-wide association studies," Statistical Applications in Genetics and Molecular Biology, De Gruyter, vol. 13(5), pages 567-587, October.
    14. Wang, Linglu & Li, Qizhai & Li, Zhaohai & Zheng, Gang, 2011. "Bayes factors in the presence of population stratification," Statistics & Probability Letters, Elsevier, vol. 81(7), pages 836-841, July.
    15. Boitard Simon & Mangin Brigitte & Azaïs Jean-Marc, 2010. "Asymptotic Distribution of the "Orthogonal" Quantitative Transmission Disequilibrium Test in a Structured Population: Exact Formula," Statistical Applications in Genetics and Molecular Biology, De Gruyter, vol. 9(1), pages 1-25, January.
    16. Ilja M Nolte & Chris Wallace & Stephen J Newhouse & Daryl Waggott & Jingyuan Fu & Nicole Soranzo & Rhian Gwilliam & Panos Deloukas & Irina Savelieva & Dongling Zheng & Chrysoula Dalageorgou & Martin F, 2009. "Common Genetic Variation Near the Phospholamban Gene Is Associated with Cardiac Repolarisation: Meta-Analysis of Three Genome-Wide Association Studies," PLOS ONE, Public Library of Science, vol. 4(7), pages 1-10, July.
    17. Nick Patterson & Alkes L Price & David Reich, 2006. "Population Structure and Eigenanalysis," PLOS Genetics, Public Library of Science, vol. 2(12), pages 1-20, December.
    18. Ferguson John P. & Palejev Dean, 2014. "P-value calibration for multiple testing problems in genomics," Statistical Applications in Genetics and Molecular Biology, De Gruyter, vol. 13(6), pages 659-673, December.
    19. Tiago C. Silva & Juan I. Young & Lanyu Zhang & Lissette Gomez & Michael A. Schmidt & Achintya Varma & X. Steven Chen & Eden R. Martin & Lily Wang, 2022. "Cross-tissue analysis of blood and brain epigenome-wide association studies in Alzheimer’s disease," Nature Communications, Nature, vol. 13(1), pages 1-16, December.
    20. Takeshi Nishiyama & Hirohisa Kishino & Sadao Suzuki & Ryosuke Ando & Hideshi Niimura & Hirokazu Uemura & Mikako Horita & Keizo Ohnaka & Nagato Kuriyama & Haruo Mikami & Naoyuki Takashima & Keitaro Mas, 2012. "Detailed Analysis of Japanese Population Substructure with a Focus on the Southwest Islands of Japan," PLOS ONE, Public Library of Science, vol. 7(4), pages 1-7, April.

    More about this item

    Statistics

    Access and download statistics

    Corrections

    All material on this site has been provided by the respective publishers and authors. You can help correct errors and omissions. When requesting a correction, please mention this item's handle: RePEc:plo:pgen00:1001177. See general information about how to correct material in RePEc.

    If you have authored this item and are not yet registered with RePEc, we encourage you to do it here. This allows to link your profile to this item. It also allows you to accept potential citations to this item that we are uncertain about.

    If CitEc recognized a bibliographic reference but did not link an item in RePEc to it, you can help with this form .

    If you know of missing items citing this one, you can help us creating those links by adding the relevant references in the same way as above, for each refering item. If you are a registered author of this item, you may also want to check the "citations" tab in your RePEc Author Service profile, as there may be some citations waiting for confirmation.

    For technical questions regarding this item, or to correct its authors, title, abstract, bibliographic or download information, contact: plosgenetics (email available below). General contact details of provider: https://journals.plos.org/plosgenetics/ .

    Please note that corrections may take a couple of weeks to filter through the various RePEc services.

    IDEAS is a RePEc service. RePEc uses bibliographic data supplied by the respective publishers.