IDEAS home Printed from https://ideas.repec.org/a/plo/pgen00/0010024.html
   My bibliography  Save this article

Genome-Wide Requirements for Resistance to Functionally Distinct DNA-Damaging Agents

Author

Listed:
  • William Lee
  • Robert P St.Onge
  • Michael Proctor
  • Patrick Flaherty
  • Michael I Jordan
  • Adam P Arkin
  • Ronald W Davis
  • Corey Nislow
  • Guri Giaever

Abstract

The mechanistic and therapeutic differences in the cellular response to DNA-damaging compounds are not completely understood, despite intense study. To expand our knowledge of DNA damage, we assayed the effects of 12 closely related DNA-damaging agents on the complete pool of ~4,700 barcoded homozygous deletion strains of Saccharomyces cerevisiae. In our protocol, deletion strains are pooled together and grown competitively in the presence of compound. Relative strain sensitivity is determined by hybridization of PCR-amplified barcodes to an oligonucleotide array carrying the barcode complements. These screens identified genes in well-characterized DNA-damage-response pathways as well as genes whose role in the DNA-damage response had not been previously established. High-throughput individual growth analysis was used to independently confirm microarray results. Each compound produced a unique genome-wide profile. Analysis of these data allowed us to determine the relative importance of DNA-repair modules for resistance to each of the 12 profiled compounds. Clustering the data for 12 distinct compounds uncovered both known and novel functional interactions that comprise the DNA-damage response and allowed us to define the genetic determinants required for repair of interstrand cross-links. Further genetic analysis allowed determination of epistasis for one of these functional groups.: Cells have evolved sophisticated ways to respond to DNA damage. This is critical because unrepaired damage can kill cells or cause them to become cancerous. The response to DNA damage has been studied for more than 50 years, and has been found to be extremely complex. The traditional way of understanding this complexity is to divide the process into its component parts with the goal of eventually reconstituting the entire process. In this study, the authors extend classical approaches using genomics—an approach that involves studying all genes in an organism simultaneously. The authors tested 12 distinct compounds (many used in cancer chemotherapy) that damage DNA and uncovered new genes involved in DNA repair. They then grouped the compounds to define how they attack cells. Using this approach, the study found that many similar DNA-damaging agents act in comparable ways to damage DNA, but surprisingly, similar compounds can also act on cells by very different mechanisms. Specifically grouping the findings together and verifying the significant results lends a high degree of confidence in the data. The development of such a reproducible experimental design is important for inspiring future experiments.

Suggested Citation

  • William Lee & Robert P St.Onge & Michael Proctor & Patrick Flaherty & Michael I Jordan & Adam P Arkin & Ronald W Davis & Corey Nislow & Guri Giaever, 2005. "Genome-Wide Requirements for Resistance to Functionally Distinct DNA-Damaging Agents," PLOS Genetics, Public Library of Science, vol. 1(2), pages 1-1, August.
  • Handle: RePEc:plo:pgen00:0010024
    DOI: 10.1371/journal.pgen.0010024
    as

    Download full text from publisher

    File URL: https://journals.plos.org/plosgenetics/article?id=10.1371/journal.pgen.0010024
    Download Restriction: no

    File URL: https://journals.plos.org/plosgenetics/article/file?id=10.1371/journal.pgen.0010024&type=printable
    Download Restriction: no

    File URL: https://libkey.io/10.1371/journal.pgen.0010024?utm_source=ideas
    LibKey link: if access is restricted and if your library uses this service, LibKey will redirect you to where you can use your library subscription to access this item
    ---><---

    References listed on IDEAS

    as
    1. Bruce Alberts, 2003. "DNA replication and recombination," Nature, Nature, vol. 421(6921), pages 431-435, January.
    2. Michael B. Kastan & Jiri Bartek, 2004. "Cell-cycle checkpoints and cancer," Nature, Nature, vol. 432(7015), pages 316-323, November.
    3. Bin-Bing S. Zhou & Stephen J. Elledge, 2000. "The DNA damage response: putting checkpoints in perspective," Nature, Nature, vol. 408(6811), pages 433-439, November.
    4. Efron, Bradley, 2004. "Large-Scale Simultaneous Hypothesis Testing: The Choice of a Null Hypothesis," Journal of the American Statistical Association, American Statistical Association, vol. 99, pages 96-104, January.
    5. Won-Ki Huh & James V. Falvo & Luke C. Gerke & Adam S. Carroll & Russell W. Howson & Jonathan S. Weissman & Erin K. O'Shea, 2003. "Global analysis of protein localization in budding yeast," Nature, Nature, vol. 425(6959), pages 686-691, October.
    6. Harith Rajagopalan & Christoph Lengauer, 2004. "Aneuploidy and cancer," Nature, Nature, vol. 432(7015), pages 338-341, November.
    Full references (including those not matched with items on IDEAS)

    Most related items

    These are the items that most often cite the same works as this one and are cited by the same works as this one.
    1. Oliver M Crook & Aikaterini Geladaki & Daniel J H Nightingale & Owen L Vennard & Kathryn S Lilley & Laurent Gatto & Paul D W Kirk, 2020. "A semi-supervised Bayesian approach for simultaneous protein sub-cellular localisation assignment and novelty detection," PLOS Computational Biology, Public Library of Science, vol. 16(11), pages 1-21, November.
    2. Pounds Stanley B. & Gao Cuilan L. & Zhang Hui, 2012. "Empirical Bayesian Selection of Hypothesis Testing Procedures for Analysis of Sequence Count Expression Data," Statistical Applications in Genetics and Molecular Biology, De Gruyter, vol. 11(5), pages 1-32, October.
    3. Julia P. Schessner & Vincent Albrecht & Alexandra K. Davies & Pavel Sinitcyn & Georg H. H. Borner, 2023. "Deep and fast label-free Dynamic Organellar Mapping," Nature Communications, Nature, vol. 14(1), pages 1-19, December.
    4. Shigeyuki Matsui & Hisashi Noma, 2011. "Estimating Effect Sizes of Differentially Expressed Genes for Power and Sample-Size Assessments in Microarray Experiments," Biometrics, The International Biometric Society, vol. 67(4), pages 1225-1235, December.
    5. Arthur Fischbach & Angela Johns & Kara L. Schneider & Xinxin Hao & Peter Tessarz & Thomas Nyström, 2023. "Artificial Hsp104-mediated systems for re-localizing protein aggregates," Nature Communications, Nature, vol. 14(1), pages 1-14, December.
    6. Won, Joong-Ho & Lim, Johan & Yu, Donghyeon & Kim, Byung Soo & Kim, Kyunga, 2014. "Monotone false discovery rate," Statistics & Probability Letters, Elsevier, vol. 87(C), pages 86-93.
    7. Zaili Luo & Dazhuan Xin & Yunfei Liao & Kalen Berry & Sean Ogurek & Feng Zhang & Liguo Zhang & Chuntao Zhao & Rohit Rao & Xinran Dong & Hao Li & Jianzhong Yu & Yifeng Lin & Guoying Huang & Lingli Xu &, 2023. "Loss of phosphatase CTDNEP1 potentiates aggressive medulloblastoma by triggering MYC amplification and genomic instability," Nature Communications, Nature, vol. 14(1), pages 1-19, December.
    8. Kudzanayi Z. Mapfumo & Jane C. Pagan’a & Victor Ogesa Juma & Nikos I. Kavallaris & Anotida Madzvamuse, 2022. "A Model for the Proliferation–Quiescence Transition in Human Cells," Mathematics, MDPI, vol. 10(14), pages 1-24, July.
    9. van Wieringen, Wessel N. & Stam, Koen A. & Peeters, Carel F.W. & van de Wiel, Mark A., 2020. "Updating of the Gaussian graphical model through targeted penalized estimation," Journal of Multivariate Analysis, Elsevier, vol. 178(C).
    10. Ian W. McKeague & Min Qian, 2015. "An Adaptive Resampling Test for Detecting the Presence of Significant Predictors," Journal of the American Statistical Association, Taylor & Francis Journals, vol. 110(512), pages 1422-1433, December.
    11. Angela Schörgendorfer & Adam J. Branscum & Timothy E. Hanson, 2013. "A Bayesian Goodness of Fit Test and Semiparametric Generalization of Logistic Regression with Measurement Data," Biometrics, The International Biometric Society, vol. 69(2), pages 508-519, June.
    12. Louis-François Handfield & Yolanda T Chong & Jibril Simmons & Brenda J Andrews & Alan M Moses, 2013. "Unsupervised Clustering of Subcellular Protein Expression Patterns in High-Throughput Microscopy Images Reveals Protein Complexes and Functional Relationships between Proteins," PLOS Computational Biology, Public Library of Science, vol. 9(6), pages 1-19, June.
    13. Koji Ishikawa & Akari Ishihara & Hisao Moriya, 2020. "Exploring the Complexity of Protein-Level Dosage Compensation that Fine-Tunes Stoichiometry of Multiprotein Complexes," PLOS Genetics, Public Library of Science, vol. 16(10), pages 1-20, October.
    14. Han, Bing & Dalal, Siddhartha R., 2012. "A Bernstein-type estimator for decreasing density with application to p-value adjustments," Computational Statistics & Data Analysis, Elsevier, vol. 56(2), pages 427-437.
    15. Dalia Valencia & Rosa E. Lillo & Juan Romo, 2019. "A Kendall correlation coefficient between functional data," Advances in Data Analysis and Classification, Springer;German Classification Society - Gesellschaft für Klassifikation (GfKl);Japanese Classification Society (JCS);Classification and Data Analysis Group of the Italian Statistical Society (CLADAG);International Federation of Classification Societies (IFCS), vol. 13(4), pages 1083-1103, December.
    16. Kline, Patrick & Walters, Christopher, 2019. "Audits as Evidence: Experiments, Ensembles, and Enforcement," Institute for Research on Labor and Employment, Working Paper Series qt3z72m9kn, Institute of Industrial Relations, UC Berkeley.
    17. He, Yi & Pan, Wei & Lin, Jizhen, 2006. "Cluster analysis using multivariate normal mixture models to detect differential gene expression with microarray data," Computational Statistics & Data Analysis, Elsevier, vol. 51(2), pages 641-658, November.
    18. Maya Dinur-Mills & Merav Tal & Ophry Pines, 2008. "Dual Targeted Mitochondrial Proteins Are Characterized by Lower MTS Parameters and Total Net Charge," PLOS ONE, Public Library of Science, vol. 3(5), pages 1-8, May.
    19. Cheng, Cheng, 2009. "Internal validation inferences of significant genomic features in genome-wide screening," Computational Statistics & Data Analysis, Elsevier, vol. 53(3), pages 788-800, January.
    20. Sinjini Sikdar & Somnath Datta & Susmita Datta, 2017. "EAMA: Empirically adjusted meta-analysis for large-scale simultaneous hypothesis testing in genomic experiments," PLOS ONE, Public Library of Science, vol. 12(10), pages 1-19, October.

    More about this item

    Statistics

    Access and download statistics

    Corrections

    All material on this site has been provided by the respective publishers and authors. You can help correct errors and omissions. When requesting a correction, please mention this item's handle: RePEc:plo:pgen00:0010024. See general information about how to correct material in RePEc.

    If you have authored this item and are not yet registered with RePEc, we encourage you to do it here. This allows to link your profile to this item. It also allows you to accept potential citations to this item that we are uncertain about.

    If CitEc recognized a bibliographic reference but did not link an item in RePEc to it, you can help with this form .

    If you know of missing items citing this one, you can help us creating those links by adding the relevant references in the same way as above, for each refering item. If you are a registered author of this item, you may also want to check the "citations" tab in your RePEc Author Service profile, as there may be some citations waiting for confirmation.

    For technical questions regarding this item, or to correct its authors, title, abstract, bibliographic or download information, contact: plosgenetics (email available below). General contact details of provider: https://journals.plos.org/plosgenetics/ .

    Please note that corrections may take a couple of weeks to filter through the various RePEc services.

    IDEAS is a RePEc service. RePEc uses bibliographic data supplied by the respective publishers.