Author
Listed:
- William Lee
- Robert P St.Onge
- Michael Proctor
- Patrick Flaherty
- Michael I Jordan
- Adam P Arkin
- Ronald W Davis
- Corey Nislow
- Guri Giaever
Abstract
The mechanistic and therapeutic differences in the cellular response to DNA-damaging compounds are not completely understood, despite intense study. To expand our knowledge of DNA damage, we assayed the effects of 12 closely related DNA-damaging agents on the complete pool of ~4,700 barcoded homozygous deletion strains of Saccharomyces cerevisiae. In our protocol, deletion strains are pooled together and grown competitively in the presence of compound. Relative strain sensitivity is determined by hybridization of PCR-amplified barcodes to an oligonucleotide array carrying the barcode complements. These screens identified genes in well-characterized DNA-damage-response pathways as well as genes whose role in the DNA-damage response had not been previously established. High-throughput individual growth analysis was used to independently confirm microarray results. Each compound produced a unique genome-wide profile. Analysis of these data allowed us to determine the relative importance of DNA-repair modules for resistance to each of the 12 profiled compounds. Clustering the data for 12 distinct compounds uncovered both known and novel functional interactions that comprise the DNA-damage response and allowed us to define the genetic determinants required for repair of interstrand cross-links. Further genetic analysis allowed determination of epistasis for one of these functional groups.: Cells have evolved sophisticated ways to respond to DNA damage. This is critical because unrepaired damage can kill cells or cause them to become cancerous. The response to DNA damage has been studied for more than 50 years, and has been found to be extremely complex. The traditional way of understanding this complexity is to divide the process into its component parts with the goal of eventually reconstituting the entire process. In this study, the authors extend classical approaches using genomics—an approach that involves studying all genes in an organism simultaneously. The authors tested 12 distinct compounds (many used in cancer chemotherapy) that damage DNA and uncovered new genes involved in DNA repair. They then grouped the compounds to define how they attack cells. Using this approach, the study found that many similar DNA-damaging agents act in comparable ways to damage DNA, but surprisingly, similar compounds can also act on cells by very different mechanisms. Specifically grouping the findings together and verifying the significant results lends a high degree of confidence in the data. The development of such a reproducible experimental design is important for inspiring future experiments.
Suggested Citation
William Lee & Robert P St.Onge & Michael Proctor & Patrick Flaherty & Michael I Jordan & Adam P Arkin & Ronald W Davis & Corey Nislow & Guri Giaever, 2005.
"Genome-Wide Requirements for Resistance to Functionally Distinct DNA-Damaging Agents,"
PLOS Genetics, Public Library of Science, vol. 1(2), pages 1-1, August.
Handle:
RePEc:plo:pgen00:0010024
DOI: 10.1371/journal.pgen.0010024
Download full text from publisher
Corrections
All material on this site has been provided by the respective publishers and authors. You can help correct errors and omissions. When requesting a correction, please mention this item's handle: RePEc:plo:pgen00:0010024. See general information about how to correct material in RePEc.
If you have authored this item and are not yet registered with RePEc, we encourage you to do it here. This allows to link your profile to this item. It also allows you to accept potential citations to this item that we are uncertain about.
We have no bibliographic references for this item. You can help adding them by using this form .
If you know of missing items citing this one, you can help us creating those links by adding the relevant references in the same way as above, for each refering item. If you are a registered author of this item, you may also want to check the "citations" tab in your RePEc Author Service profile, as there may be some citations waiting for confirmation.
For technical questions regarding this item, or to correct its authors, title, abstract, bibliographic or download information, contact: plosgenetics (email available below). General contact details of provider: https://journals.plos.org/plosgenetics/ .
Please note that corrections may take a couple of weeks to filter through
the various RePEc services.