IDEAS home Printed from https://ideas.repec.org/a/plo/pcbi00/1009029.html
   My bibliography  Save this article

G2S3: A gene graph-based imputation method for single-cell RNA sequencing data

Author

Listed:
  • Weimiao Wu
  • Yunqing Liu
  • Qile Dai
  • Xiting Yan
  • Zuoheng Wang

Abstract

Single-cell RNA sequencing technology provides an opportunity to study gene expression at single-cell resolution. However, prevalent dropout events result in high data sparsity and noise that may obscure downstream analyses in single-cell transcriptomic studies. We propose a new method, G2S3, that imputes dropouts by borrowing information from adjacent genes in a sparse gene graph learned from gene expression profiles across cells. We applied G2S3 and ten existing imputation methods to eight single-cell transcriptomic datasets and compared their performance. Our results demonstrated that G2S3 has superior overall performance in recovering gene expression, identifying cell subtypes, reconstructing cell trajectories, identifying differentially expressed genes, and recovering gene regulatory and correlation relationships. Moreover, G2S3 is computationally efficient for imputation in large-scale single-cell transcriptomic datasets.Author summary: Single-cell RNA sequencing (scRNA-seq) measures the expression profiles of individual cells. However, dropouts lead to an excessive number of zeros or close to zero values in the data, which may obscure downstream analyses. In this study, we developed G2S3, an imputation method that recovers gene expression in scRNA-seq data by borrowing information from adjacent genes in a gene graph learned by graph signal processing. G2S3 was shown to have superior performance in improving data quality. Moreover, G2S3 is computationally efficient in large-scale scRNA-seq data imputation.

Suggested Citation

  • Weimiao Wu & Yunqing Liu & Qile Dai & Xiting Yan & Zuoheng Wang, 2021. "G2S3: A gene graph-based imputation method for single-cell RNA sequencing data," PLOS Computational Biology, Public Library of Science, vol. 17(5), pages 1-24, May.
  • Handle: RePEc:plo:pcbi00:1009029
    DOI: 10.1371/journal.pcbi.1009029
    as

    Download full text from publisher

    File URL: https://journals.plos.org/ploscompbiol/article?id=10.1371/journal.pcbi.1009029
    Download Restriction: no

    File URL: https://journals.plos.org/ploscompbiol/article/file?id=10.1371/journal.pcbi.1009029&type=printable
    Download Restriction: no

    File URL: https://libkey.io/10.1371/journal.pcbi.1009029?utm_source=ideas
    LibKey link: if access is restricted and if your library uses this service, LibKey will redirect you to where you can use your library subscription to access this item
    ---><---

    References listed on IDEAS

    as
    1. Dominic Grün & Anna Lyubimova & Lennart Kester & Kay Wiebrands & Onur Basak & Nobuo Sasaki & Hans Clevers & Alexander van Oudenaarden, 2015. "Single-cell messenger RNA sequencing reveals rare intestinal cell types," Nature, Nature, vol. 525(7568), pages 251-255, September.
    Full references (including those not matched with items on IDEAS)

    Most related items

    These are the items that most often cite the same works as this one and are cited by the same works as this one.
    1. Ming-Wen Hu & Dong Won Kim & Sheng Liu & Donald J Zack & Seth Blackshaw & Jiang Qian, 2019. "PanoView: An iterative clustering method for single-cell RNA sequencing data," PLOS Computational Biology, Public Library of Science, vol. 15(8), pages 1-17, August.
    2. Zhiyuan Yuan & Yisi Li & Minglei Shi & Fan Yang & Juntao Gao & Jianhua Yao & Michael Q. Zhang, 2022. "SOTIP is a versatile method for microenvironment modeling with spatial omics data," Nature Communications, Nature, vol. 13(1), pages 1-19, December.
    3. Davide Risso & Liam Purvis & Russell B Fletcher & Diya Das & John Ngai & Sandrine Dudoit & Elizabeth Purdom, 2018. "clusterExperiment and RSEC: A Bioconductor package and framework for clustering of single-cell and other large gene expression datasets," PLOS Computational Biology, Public Library of Science, vol. 14(9), pages 1-16, September.
    4. Ihab Ansari & Llorenç Solé-Boldo & Meshi Ridnik & Julian Gutekunst & Oliver Gilliam & Maria Korshko & Timur Liwinski & Birgit Jickeli & Noa Weinberg-Corem & Michal Shoshkes-Carmel & Eli Pikarsky & Era, 2023. "TET2 and TET3 loss disrupts small intestine differentiation and homeostasis," Nature Communications, Nature, vol. 14(1), pages 1-18, December.
    5. Suner Aslı, 2019. "Clustering methods for single-cell RNA-sequencing expression data: performance evaluation with varying sample sizes and cell compositions," Statistical Applications in Genetics and Molecular Biology, De Gruyter, vol. 18(5), pages 1-14, October.

    More about this item

    Statistics

    Access and download statistics

    Corrections

    All material on this site has been provided by the respective publishers and authors. You can help correct errors and omissions. When requesting a correction, please mention this item's handle: RePEc:plo:pcbi00:1009029. See general information about how to correct material in RePEc.

    If you have authored this item and are not yet registered with RePEc, we encourage you to do it here. This allows to link your profile to this item. It also allows you to accept potential citations to this item that we are uncertain about.

    If CitEc recognized a bibliographic reference but did not link an item in RePEc to it, you can help with this form .

    If you know of missing items citing this one, you can help us creating those links by adding the relevant references in the same way as above, for each refering item. If you are a registered author of this item, you may also want to check the "citations" tab in your RePEc Author Service profile, as there may be some citations waiting for confirmation.

    For technical questions regarding this item, or to correct its authors, title, abstract, bibliographic or download information, contact: ploscompbiol (email available below). General contact details of provider: https://journals.plos.org/ploscompbiol/ .

    Please note that corrections may take a couple of weeks to filter through the various RePEc services.

    IDEAS is a RePEc service. RePEc uses bibliographic data supplied by the respective publishers.