IDEAS home Printed from https://ideas.repec.org/a/plo/pcbi00/1006378.html
   My bibliography  Save this article

clusterExperiment and RSEC: A Bioconductor package and framework for clustering of single-cell and other large gene expression datasets

Author

Listed:
  • Davide Risso
  • Liam Purvis
  • Russell B Fletcher
  • Diya Das
  • John Ngai
  • Sandrine Dudoit
  • Elizabeth Purdom

Abstract

Clustering of genes and/or samples is a common task in gene expression analysis. The goals in clustering can vary, but an important scenario is that of finding biologically meaningful subtypes within the samples. This is an application that is particularly appropriate when there are large numbers of samples, as in many human disease studies. With the increasing popularity of single-cell transcriptome sequencing (RNA-Seq), many more controlled experiments on model organisms are similarly creating large gene expression datasets with the goal of detecting previously unknown heterogeneity within cells. It is common in the detection of novel subtypes to run many clustering algorithms, as well as rely on subsampling and ensemble methods to improve robustness. We introduce a Bioconductor R package, clusterExperiment, that implements a general and flexible strategy we entitle Resampling-based Sequential Ensemble Clustering (RSEC). RSEC enables the user to easily create multiple, competing clusterings of the data based on different techniques and associated tuning parameters, including easy integration of resampling and sequential clustering, and then provides methods for consolidating the multiple clusterings into a final consensus clustering. The package is modular and allows the user to separately apply the individual components of the RSEC procedure, i.e., apply multiple clustering algorithms, create a consensus clustering or choose tuning parameters, and merge clusters. Additionally, clusterExperiment provides a variety of visualization tools for the clustering process, as well as methods for the identification of possible cluster signatures or biomarkers. The R package clusterExperiment is publicly available through the Bioconductor Project, with a detailed manual (vignette) as well as well documented help pages for each function.

Suggested Citation

  • Davide Risso & Liam Purvis & Russell B Fletcher & Diya Das & John Ngai & Sandrine Dudoit & Elizabeth Purdom, 2018. "clusterExperiment and RSEC: A Bioconductor package and framework for clustering of single-cell and other large gene expression datasets," PLOS Computational Biology, Public Library of Science, vol. 14(9), pages 1-16, September.
  • Handle: RePEc:plo:pcbi00:1006378
    DOI: 10.1371/journal.pcbi.1006378
    as

    Download full text from publisher

    File URL: https://journals.plos.org/ploscompbiol/article?id=10.1371/journal.pcbi.1006378
    Download Restriction: no

    File URL: https://journals.plos.org/ploscompbiol/article/file?id=10.1371/journal.pcbi.1006378&type=printable
    Download Restriction: no

    File URL: https://libkey.io/10.1371/journal.pcbi.1006378?utm_source=ideas
    LibKey link: if access is restricted and if your library uses this service, LibKey will redirect you to where you can use your library subscription to access this item
    ---><---

    References listed on IDEAS

    as
    1. John D. Storey, 2002. "A direct approach to false discovery rates," Journal of the Royal Statistical Society Series B, Royal Statistical Society, vol. 64(3), pages 479-498, August.
    2. Jin, Jiashun & Cai, T. Tony, 2007. "Estimating the Null and the Proportion of Nonnull Effects in Large-Scale Multiple Comparisons," Journal of the American Statistical Association, American Statistical Association, vol. 102, pages 495-506, June.
    3. George C. Tseng & Wing H. Wong, 2005. "Tight Clustering: A Resampling-Based Approach for Identifying Stable and Tight Patterns in Data," Biometrics, The International Biometric Society, vol. 61(1), pages 10-16, March.
    4. Efron, Bradley, 2004. "Large-Scale Simultaneous Hypothesis Testing: The Choice of a Null Hypothesis," Journal of the American Statistical Association, American Statistical Association, vol. 99, pages 96-104, January.
    5. Dominic Grün & Anna Lyubimova & Lennart Kester & Kay Wiebrands & Onur Basak & Nobuo Sasaki & Hans Clevers & Alexander van Oudenaarden, 2015. "Single-cell messenger RNA sequencing reveals rare intestinal cell types," Nature, Nature, vol. 525(7568), pages 251-255, September.
    6. Nicolai Meinshausen & Peter Buhlmann, 2005. "Lower bounds for the number of false null hypotheses for multiple testing of associations under general dependence structures," Biometrika, Biometrika Trust, vol. 92(4), pages 893-907, December.
    Full references (including those not matched with items on IDEAS)

    Most related items

    These are the items that most often cite the same works as this one and are cited by the same works as this one.
    1. T. Tony Cai & Wenguang Sun, 2017. "Optimal screening and discovery of sparse signals with applications to multistage high throughput studies," Journal of the Royal Statistical Society Series B, Royal Statistical Society, vol. 79(1), pages 197-223, January.
    2. Zhao, Haibing & Fung, Wing Kam, 2016. "A powerful FDR control procedure for multiple hypotheses," Computational Statistics & Data Analysis, Elsevier, vol. 98(C), pages 60-70.
    3. T. Tony Cai & Wenguang Sun & Weinan Wang, 2019. "Covariate‐assisted ranking and screening for large‐scale two‐sample inference," Journal of the Royal Statistical Society Series B, Royal Statistical Society, vol. 81(2), pages 187-234, April.
    4. Helmut Finner & Veronika Gontscharuk, 2009. "Controlling the familywise error rate with plug‐in estimator for the proportion of true null hypotheses," Journal of the Royal Statistical Society Series B, Royal Statistical Society, vol. 71(5), pages 1031-1048, November.
    5. Habiger, Joshua D. & Peña, Edsel A., 2014. "Compound p-value statistics for multiple testing procedures," Journal of Multivariate Analysis, Elsevier, vol. 126(C), pages 153-166.
    6. Wen Shi & Xi Chen & Jennifer Shang, 2019. "An Efficient Morris Method-Based Framework for Simulation Factor Screening," INFORMS Journal on Computing, INFORMS, vol. 31(4), pages 745-770, October.
    7. Van Hanh Nguyen & Catherine Matias, 2014. "On Efficient Estimators of the Proportion of True Null Hypotheses in a Multiple Testing Setup," Scandinavian Journal of Statistics, Danish Society for Theoretical Statistics;Finnish Statistical Society;Norwegian Statistical Association;Swedish Statistical Association, vol. 41(4), pages 1167-1194, December.
    8. Shigeyuki Matsui & Hisashi Noma, 2011. "Estimating Effect Sizes of Differentially Expressed Genes for Power and Sample-Size Assessments in Microarray Experiments," Biometrics, The International Biometric Society, vol. 67(4), pages 1225-1235, December.
    9. Won, Joong-Ho & Lim, Johan & Yu, Donghyeon & Kim, Byung Soo & Kim, Kyunga, 2014. "Monotone false discovery rate," Statistics & Probability Letters, Elsevier, vol. 87(C), pages 86-93.
    10. Kline, Patrick & Walters, Christopher, 2019. "Audits as Evidence: Experiments, Ensembles, and Enforcement," Institute for Research on Labor and Employment, Working Paper Series qt3z72m9kn, Institute of Industrial Relations, UC Berkeley.
    11. He, Yi & Pan, Wei & Lin, Jizhen, 2006. "Cluster analysis using multivariate normal mixture models to detect differential gene expression with microarray data," Computational Statistics & Data Analysis, Elsevier, vol. 51(2), pages 641-658, November.
    12. Cheng, Cheng, 2009. "Internal validation inferences of significant genomic features in genome-wide screening," Computational Statistics & Data Analysis, Elsevier, vol. 53(3), pages 788-800, January.
    13. Chen, Xiongzhi, 2019. "Uniformly consistently estimating the proportion of false null hypotheses via Lebesgue–Stieltjes integral equations," Journal of Multivariate Analysis, Elsevier, vol. 173(C), pages 724-744.
    14. Xiang, Qinfang & Edwards, Jode & Gadbury, Gary L., 2006. "Interval estimation in a finite mixture model: Modeling P-values in multiple testing applications," Computational Statistics & Data Analysis, Elsevier, vol. 51(2), pages 570-586, November.
    15. Cipolli III, William & Hanson, Timothy & McLain, Alexander C., 2016. "Bayesian nonparametric multiple testing," Computational Statistics & Data Analysis, Elsevier, vol. 101(C), pages 64-79.
    16. Ming Yuan & Christina Kendziorski, 2006. "A Unified Approach for Simultaneous Gene Clustering and Differential Expression Identification," Biometrics, The International Biometric Society, vol. 62(4), pages 1089-1098, December.
    17. Leek Jeffrey T & Storey John D., 2011. "The Joint Null Criterion for Multiple Hypothesis Tests," Statistical Applications in Genetics and Molecular Biology, De Gruyter, vol. 10(1), pages 1-22, June.
    18. Xinge Jessie Jeng & Zhongyin John Daye & Wenbin Lu & Jung-Ying Tzeng, 2016. "Rare Variants Association Analysis in Large-Scale Sequencing Studies at the Single Locus Level," PLOS Computational Biology, Public Library of Science, vol. 12(6), pages 1-23, June.
    19. Lim Johan & Kim Jayoun & Kim Sang-cheol & Yu Donghyeon & Kim Kyunga & Kim Byung Soo, 2012. "Detection of Differentially Expressed Gene Sets in a Partially Paired Microarray Data Set," Statistical Applications in Genetics and Molecular Biology, De Gruyter, vol. 11(3), pages 1-30, February.
    20. David R. Bickel, 2014. "Small-scale Inference: Empirical Bayes and Confidence Methods for as Few as a Single Comparison," International Statistical Review, International Statistical Institute, vol. 82(3), pages 457-476, December.

    More about this item

    Statistics

    Access and download statistics

    Corrections

    All material on this site has been provided by the respective publishers and authors. You can help correct errors and omissions. When requesting a correction, please mention this item's handle: RePEc:plo:pcbi00:1006378. See general information about how to correct material in RePEc.

    If you have authored this item and are not yet registered with RePEc, we encourage you to do it here. This allows to link your profile to this item. It also allows you to accept potential citations to this item that we are uncertain about.

    If CitEc recognized a bibliographic reference but did not link an item in RePEc to it, you can help with this form .

    If you know of missing items citing this one, you can help us creating those links by adding the relevant references in the same way as above, for each refering item. If you are a registered author of this item, you may also want to check the "citations" tab in your RePEc Author Service profile, as there may be some citations waiting for confirmation.

    For technical questions regarding this item, or to correct its authors, title, abstract, bibliographic or download information, contact: ploscompbiol (email available below). General contact details of provider: https://journals.plos.org/ploscompbiol/ .

    Please note that corrections may take a couple of weeks to filter through the various RePEc services.

    IDEAS is a RePEc service. RePEc uses bibliographic data supplied by the respective publishers.