IDEAS home Printed from https://ideas.repec.org/a/plo/pcbi00/1008132.html
   My bibliography  Save this article

Microtubule instability driven by longitudinal and lateral strain propagation

Author

Listed:
  • Maxim Igaev
  • Helmut Grubmüller

Abstract

Tubulin dimers associate longitudinally and laterally to form metastable microtubules (MTs). MT disassembly is preceded by subtle structural changes in tubulin fueled by GTP hydrolysis. These changes render the MT lattice unstable, but it is unclear exactly how they affect lattice energetics and strain. We performed long-time atomistic simulations to interrogate the impacts of GTP hydrolysis on tubulin lattice conformation, lateral inter-dimer interactions, and (non-)local lateral coordination of dimer motions. The simulations suggest that most of the hydrolysis energy is stored in the lattice in the form of longitudinal strain. While not significantly affecting lateral bond stability, the stored elastic energy results in more strongly confined and correlated dynamics of GDP-tubulins, thereby entropically destabilizing the MT lattice.Author summary: The dynamic nature of microtubules, long and hollow tubes formed by αβ-tubulin proteins, is crucial for their function is cells, and its precise characterization has been a long-standing problem for cell scientists. Microtubules are essential for cargo transport and provide mechanical forces in chromosome segregation when they disassemble. The disassembly proceeds via changes in the shapes of tubulins upon consumption of a chemical fuel called GTP that binds to every tubulin molecule. This leads to the accumulation of mechanical tension inside the microtubule and ultimately drives it beyond the stability threshold. However, it is still elusive how and where these shape changes contribute to the rapid release of the stored elastic energy. Here, we investigate the behavior of tubulin dimers in a microtubule-like environment using extensive atomistic simulations and show that tubulins locked in the microtubule operate as both ‘loadable springs’ and ‘conformational switches’, tightly controlled by their surrounding neighbours. We further show how these shape changes potentially control the overall stability of the microtubule, providing quantitative estimates of the system’s energetics.

Suggested Citation

  • Maxim Igaev & Helmut Grubmüller, 2020. "Microtubule instability driven by longitudinal and lateral strain propagation," PLOS Computational Biology, Public Library of Science, vol. 16(9), pages 1-21, September.
  • Handle: RePEc:plo:pcbi00:1008132
    DOI: 10.1371/journal.pcbi.1008132
    as

    Download full text from publisher

    File URL: https://journals.plos.org/ploscompbiol/article?id=10.1371/journal.pcbi.1008132
    Download Restriction: no

    File URL: https://journals.plos.org/ploscompbiol/article/file?id=10.1371/journal.pcbi.1008132&type=printable
    Download Restriction: no

    File URL: https://libkey.io/10.1371/journal.pcbi.1008132?utm_source=ideas
    LibKey link: if access is restricted and if your library uses this service, LibKey will redirect you to where you can use your library subscription to access this item
    ---><---

    References listed on IDEAS

    as
    1. Ekaterina L. Grishchuk & Maxim I. Molodtsov & Fazly I. Ataullakhanov & J. Richard McIntosh, 2005. "Force production by disassembling microtubules," Nature, Nature, vol. 438(7066), pages 384-388, November.
    2. Eva Nogales & Sharon G. Wolf & Kenneth H. Downing, 1998. "Structure of the αβ tubulin dimer by electron crystallography," Nature, Nature, vol. 391(6663), pages 199-203, January.
    3. Ai Woon Yee & Matteo Aldeghi & Matthew P. Blakeley & Andreas Ostermann & Philippe J. Mas & Martine Moulin & Daniele de Sanctis & Matthew W. Bowler & Christoph Mueller-Dieckmann & Edward P. Mitchell & , 2019. "A molecular mechanism for transthyretin amyloidogenesis," Nature Communications, Nature, vol. 10(1), pages 1-10, December.
    4. Hong-Wei Wang & Eva Nogales, 2005. "Nucleotide-dependent bending flexibility of tubulin regulates microtubule assembly," Nature, Nature, vol. 435(7044), pages 911-915, June.
    5. Vladimir A Fedorov & Philipp S Orekhov & Ekaterina G Kholina & Artem A Zhmurov & Fazoil I Ataullakhanov & Ilya B Kovalenko & Nikita B Gudimchuk, 2019. "Mechanical properties of tubulin intra- and inter-dimer interfaces and their implications for microtubule dynamic instability," PLOS Computational Biology, Public Library of Science, vol. 15(8), pages 1-25, August.
    Full references (including those not matched with items on IDEAS)

    Most related items

    These are the items that most often cite the same works as this one and are cited by the same works as this one.
    1. Ishutesh Jain & Mandar M Inamdar & Ranjith Padinhateeri, 2015. "Statistical Mechanics Provides Novel Insights into Microtubule Stability and Mechanism of Shrinkage," PLOS Computational Biology, Public Library of Science, vol. 11(2), pages 1-23, February.
    2. Vladimir A Fedorov & Philipp S Orekhov & Ekaterina G Kholina & Artem A Zhmurov & Fazoil I Ataullakhanov & Ilya B Kovalenko & Nikita B Gudimchuk, 2019. "Mechanical properties of tubulin intra- and inter-dimer interfaces and their implications for microtubule dynamic instability," PLOS Computational Biology, Public Library of Science, vol. 15(8), pages 1-25, August.
    3. Emily G. Saccuzzo & Mubark D. Mebrat & Hailee F. Scelsi & Minjoo Kim & Minh Thu Ma & Xinya Su & Shannon E. Hill & Elisa Rheaume & Renhao Li & Matthew P. Torres & James C. Gumbart & Wade D. Van Horn & , 2024. "Competition between inside-out unfolding and pathogenic aggregation in an amyloid-forming β-propeller," Nature Communications, Nature, vol. 15(1), pages 1-14, December.
    4. Irina Iakovleva & Michael Hall & Melanie Oelker & Linda Sandblad & Intissar Anan & A. Elisabeth Sauer-Eriksson, 2021. "Structural basis for transthyretin amyloid formation in vitreous body of the eye," Nature Communications, Nature, vol. 12(1), pages 1-10, December.
    5. Ju Zhou & Anhui Wang & Yinlong Song & Nan Liu & Jia Wang & Yan Li & Xin Liang & Guohui Li & Huiying Chu & Hong-Wei Wang, 2023. "Structural insights into the mechanism of GTP initiation of microtubule assembly," Nature Communications, Nature, vol. 14(1), pages 1-17, December.
    6. Muniyappan, A. & Parasuraman, E. & Kavitha, L., 2023. "Stability analysis and discrete breather dynamics in the microtubulin lattices," Chaos, Solitons & Fractals, Elsevier, vol. 168(C).
    7. Chen, Ying & Qiu, Xi-Jun & Dong, Xian-Lin, 2006. "A theory for cell microtubule wall in external field and pseudo-spin wave excitation," Physica A: Statistical Mechanics and its Applications, Elsevier, vol. 365(2), pages 463-472.
    8. Bram Prevo & Dhanya K. Cheerambathur & William C. Earnshaw & Arshad Desai, 2024. "Kinetochore dynein is sufficient to biorient chromosomes and remodel the outer kinetochore," Nature Communications, Nature, vol. 15(1), pages 1-13, December.
    9. Shirmovsky, S.Eh. & Shulga, D.V., 2023. "Quantum relaxation processes in microtubule tryptophan system," Physica A: Statistical Mechanics and its Applications, Elsevier, vol. 617(C).

    More about this item

    Statistics

    Access and download statistics

    Corrections

    All material on this site has been provided by the respective publishers and authors. You can help correct errors and omissions. When requesting a correction, please mention this item's handle: RePEc:plo:pcbi00:1008132. See general information about how to correct material in RePEc.

    If you have authored this item and are not yet registered with RePEc, we encourage you to do it here. This allows to link your profile to this item. It also allows you to accept potential citations to this item that we are uncertain about.

    If CitEc recognized a bibliographic reference but did not link an item in RePEc to it, you can help with this form .

    If you know of missing items citing this one, you can help us creating those links by adding the relevant references in the same way as above, for each refering item. If you are a registered author of this item, you may also want to check the "citations" tab in your RePEc Author Service profile, as there may be some citations waiting for confirmation.

    For technical questions regarding this item, or to correct its authors, title, abstract, bibliographic or download information, contact: ploscompbiol (email available below). General contact details of provider: https://journals.plos.org/ploscompbiol/ .

    Please note that corrections may take a couple of weeks to filter through the various RePEc services.

    IDEAS is a RePEc service. RePEc uses bibliographic data supplied by the respective publishers.