Mechanical properties of tubulin intra- and inter-dimer interfaces and their implications for microtubule dynamic instability
Author
Abstract
Suggested Citation
DOI: 10.1371/journal.pcbi.1007327
Download full text from publisher
References listed on IDEAS
- Ekaterina L. Grishchuk & Maxim I. Molodtsov & Fazly I. Ataullakhanov & J. Richard McIntosh, 2005. "Force production by disassembling microtubules," Nature, Nature, vol. 438(7066), pages 384-388, November.
- Raimond B.G. Ravelli & Benoît Gigant & Patrick A. Curmi & Isabelle Jourdain & Sylvie Lachkar & André Sobel & Marcel Knossow, 2004. "Insight into tubulin regulation from a complex with colchicine and a stathmin-like domain," Nature, Nature, vol. 428(6979), pages 198-202, March.
- Hong-Wei Wang & Eva Nogales, 2005. "Nucleotide-dependent bending flexibility of tubulin regulates microtubule assembly," Nature, Nature, vol. 435(7044), pages 911-915, June.
- Weiyi Wang & Soraya Cantos-Fernandes & Yuncong Lv & Hureshitanmu Kuerban & Shoeb Ahmad & Chunguang Wang & Benoît Gigant, 2017. "Insight into microtubule disassembly by kinesin-13s from the structure of Kif2C bound to tubulin," Nature Communications, Nature, vol. 8(1), pages 1-11, December.
Citations
Citations are extracted by the CitEc Project, subscribe to its RSS feed for this item.
Cited by:
- Ju Zhou & Anhui Wang & Yinlong Song & Nan Liu & Jia Wang & Yan Li & Xin Liang & Guohui Li & Huiying Chu & Hong-Wei Wang, 2023. "Structural insights into the mechanism of GTP initiation of microtubule assembly," Nature Communications, Nature, vol. 14(1), pages 1-17, December.
Most related items
These are the items that most often cite the same works as this one and are cited by the same works as this one.- Ishutesh Jain & Mandar M Inamdar & Ranjith Padinhateeri, 2015. "Statistical Mechanics Provides Novel Insights into Microtubule Stability and Mechanism of Shrinkage," PLOS Computational Biology, Public Library of Science, vol. 11(2), pages 1-23, February.
- Byron Hunter & Matthieu P. M. H. Benoit & Ana B. Asenjo & Caitlin Doubleday & Daria Trofimova & Corey Frazer & Irsa Shoukat & Hernando Sosa & John S. Allingham, 2022. "Kinesin-8-specific loop-2 controls the dual activities of the motor domain according to tubulin protofilament shape," Nature Communications, Nature, vol. 13(1), pages 1-19, December.
- Muniyappan, A. & Parasuraman, E. & Kavitha, L., 2023. "Stability analysis and discrete breather dynamics in the microtubulin lattices," Chaos, Solitons & Fractals, Elsevier, vol. 168(C).
- Bram Prevo & Dhanya K. Cheerambathur & William C. Earnshaw & Arshad Desai, 2024. "Kinetochore dynein is sufficient to biorient chromosomes and remodel the outer kinetochore," Nature Communications, Nature, vol. 15(1), pages 1-13, December.
Corrections
All material on this site has been provided by the respective publishers and authors. You can help correct errors and omissions. When requesting a correction, please mention this item's handle: RePEc:plo:pcbi00:1007327. See general information about how to correct material in RePEc.
If you have authored this item and are not yet registered with RePEc, we encourage you to do it here. This allows to link your profile to this item. It also allows you to accept potential citations to this item that we are uncertain about.
If CitEc recognized a bibliographic reference but did not link an item in RePEc to it, you can help with this form .
If you know of missing items citing this one, you can help us creating those links by adding the relevant references in the same way as above, for each refering item. If you are a registered author of this item, you may also want to check the "citations" tab in your RePEc Author Service profile, as there may be some citations waiting for confirmation.
For technical questions regarding this item, or to correct its authors, title, abstract, bibliographic or download information, contact: ploscompbiol (email available below). General contact details of provider: https://journals.plos.org/ploscompbiol/ .
Please note that corrections may take a couple of weeks to filter through the various RePEc services.