IDEAS home Printed from https://ideas.repec.org/a/nat/nature/v391y1998i6663d10.1038_34465.html
   My bibliography  Save this article

Structure of the αβ tubulin dimer by electron crystallography

Author

Listed:
  • Eva Nogales

    (Lawrence Berkeley National Laboratory)

  • Sharon G. Wolf

    (Weizmann Institute of Science)

  • Kenneth H. Downing

    (Lawrence Berkeley National Laboratory)

Abstract

The αβ tubulin heterodimer is the structural subunit of microtubules, which are cytoskeletal elements that are essential for intracellular transport and cell division in all eukaryotes. Each tubulin monomer binds a guanine nucleotide, which is non-exchangeable when it is bound in the α subunit, or N site, and exchangeable when bound in the β subunit, or E site. The α- and β-tubulins share 40% amino-acid sequence identity, both exist in several isotype forms, and both undergo a variety of post-translational modifications1. Limited sequence homology has been found with the proteins FtsZ2 and Misato3, which are involved in cell division in bacteria and Drosophila, respectively. Here we present an atomic model of the αβ tubulin dimer fitted to a 3.7-Å density map obtained by electron crystallography of zinc-induced tubulin sheets. The structures of α- and β-tubulin are basically identical: each monomer is formed by a core of two β-sheets surrounded by α-helices. The monomer structure is very compact, but can be divided into three functional domains: the amino-terminal domain containing the nucleotide-binding region, an intermediate domain containing the Taxol-binding site, and the carboxy-terminal domain, which probably constitutes the binding surface for motor proteins.

Suggested Citation

  • Eva Nogales & Sharon G. Wolf & Kenneth H. Downing, 1998. "Structure of the αβ tubulin dimer by electron crystallography," Nature, Nature, vol. 391(6663), pages 199-203, January.
  • Handle: RePEc:nat:nature:v:391:y:1998:i:6663:d:10.1038_34465
    DOI: 10.1038/34465
    as

    Download full text from publisher

    File URL: https://www.nature.com/articles/34465
    File Function: Abstract
    Download Restriction: Access to the full text of the articles in this series is restricted.

    File URL: https://libkey.io/10.1038/34465?utm_source=ideas
    LibKey link: if access is restricted and if your library uses this service, LibKey will redirect you to where you can use your library subscription to access this item
    ---><---

    As the access to this document is restricted, you may want to search for a different version of it.

    Citations

    Citations are extracted by the CitEc Project, subscribe to its RSS feed for this item.
    as


    Cited by:

    1. Chen, Ying & Qiu, Xi-Jun & Dong, Xian-Lin, 2006. "A theory for cell microtubule wall in external field and pseudo-spin wave excitation," Physica A: Statistical Mechanics and its Applications, Elsevier, vol. 365(2), pages 463-472.
    2. Ishutesh Jain & Mandar M Inamdar & Ranjith Padinhateeri, 2015. "Statistical Mechanics Provides Novel Insights into Microtubule Stability and Mechanism of Shrinkage," PLOS Computational Biology, Public Library of Science, vol. 11(2), pages 1-23, February.
    3. Shirmovsky, S.Eh. & Shulga, D.V., 2023. "Quantum relaxation processes in microtubule tryptophan system," Physica A: Statistical Mechanics and its Applications, Elsevier, vol. 617(C).

    More about this item

    Statistics

    Access and download statistics

    Corrections

    All material on this site has been provided by the respective publishers and authors. You can help correct errors and omissions. When requesting a correction, please mention this item's handle: RePEc:nat:nature:v:391:y:1998:i:6663:d:10.1038_34465. See general information about how to correct material in RePEc.

    If you have authored this item and are not yet registered with RePEc, we encourage you to do it here. This allows to link your profile to this item. It also allows you to accept potential citations to this item that we are uncertain about.

    We have no bibliographic references for this item. You can help adding them by using this form .

    If you know of missing items citing this one, you can help us creating those links by adding the relevant references in the same way as above, for each refering item. If you are a registered author of this item, you may also want to check the "citations" tab in your RePEc Author Service profile, as there may be some citations waiting for confirmation.

    For technical questions regarding this item, or to correct its authors, title, abstract, bibliographic or download information, contact: Sonal Shukla or Springer Nature Abstracting and Indexing (email available below). General contact details of provider: http://www.nature.com .

    Please note that corrections may take a couple of weeks to filter through the various RePEc services.

    IDEAS is a RePEc service. RePEc uses bibliographic data supplied by the respective publishers.