IDEAS home Printed from https://ideas.repec.org/a/plo/pcbi00/1007931.html
   My bibliography  Save this article

Delayed global feedback in the genesis and stability of spatiotemporal excitation patterns in paced biological excitable media

Author

Listed:
  • Zhen Song
  • Zhilin Qu

Abstract

Biological excitable media, such as cardiac or neural cells and tissue, exhibit memory in which a change in the present excitation may affect the behaviors in the next excitation. For example, a change in calcium (Ca2+) concentration in a cell in the present excitation may affect the Ca2+ dynamics in the next excitation via bi-directional coupling between voltage and Ca2+, forming a delayed feedback loop. Since the Ca2+ dynamics inside the excitable cells are spatiotemporal while the membrane voltage is a global signal, the feedback loop is then a delayed global feedback (DGF) loop. In this study, we investigate the roles of DGF in the genesis and stability of spatiotemporal excitation patterns in periodically-paced excitable media using mathematical models with different levels of complexity: a model composed of coupled FitzHugh-Nagumo units, a 3-dimensional physiologically-detailed ventricular myocyte model, and a coupled map lattice model. We investigate the dynamics of excitation patterns that are temporal period-2 (P2) and spatially concordant or discordant, such as subcellular concordant or discordant Ca2+alternans in cardiac myocytes or spatially concordant or discordant Ca2+ and repolarization alternans in cardiac tissue. Our modeling approach allows both computer simulations and rigorous analytical treatments, which lead to the following results and conclusions. When DGF is absent, concordant and discordant P2 patterns occur depending on initial conditions with the discordant P2 patterns being spatially random. When the DGF is negative, only concordant P2 patterns exist. When the DGF is positive, both concordant and discordant P2 patterns can occur. The discordant P2 patterns are still spatially random, but they satisfy that the global signal exhibits a temporal period-1 behavior. The theoretical analyses of the coupled map lattice model reveal the underlying instabilities and bifurcations caused by the DGF for the genesis, selection, and stability of spatiotemporal excitation patterns.Author summary: Understanding the mechanisms of pattern formation in biological systems is of great importance. Here we investigate the dynamical mechanisms by which delayed global feedback affects excitation pattern formation and stability in periodically-paced biological excitable media, such as cardiac or neural cells and tissue. We focus on the formation and stability of the temporal period-2 and spatially in-phase and out-of-phase excitation patterns. Using models of different levels of complexity, we show that when the delayed global feedback is negative, only the spatially in-phase patterns are stable. When the feedback is positive, both spatially in-phase and out-of-phase patterns are stable, and the out-of-phase patterns are spatially random but satisfy that the global signals are temporal period-1 solutions.

Suggested Citation

  • Zhen Song & Zhilin Qu, 2020. "Delayed global feedback in the genesis and stability of spatiotemporal excitation patterns in paced biological excitable media," PLOS Computational Biology, Public Library of Science, vol. 16(10), pages 1-23, October.
  • Handle: RePEc:plo:pcbi00:1007931
    DOI: 10.1371/journal.pcbi.1007931
    as

    Download full text from publisher

    File URL: https://journals.plos.org/ploscompbiol/article?id=10.1371/journal.pcbi.1007931
    Download Restriction: no

    File URL: https://journals.plos.org/ploscompbiol/article/file?id=10.1371/journal.pcbi.1007931&type=printable
    Download Restriction: no

    File URL: https://libkey.io/10.1371/journal.pcbi.1007931?utm_source=ideas
    LibKey link: if access is restricted and if your library uses this service, LibKey will redirect you to where you can use your library subscription to access this item
    ---><---

    References listed on IDEAS

    as
    1. Céline Gomez & Ertuğrul M. Özbudak & Joshua Wunderlich & Diana Baumann & Julian Lewis & Olivier Pourquié, 2008. "Control of segment number in vertebrate embryos," Nature, Nature, vol. 454(7202), pages 335-339, July.
    Full references (including those not matched with items on IDEAS)

    Most related items

    These are the items that most often cite the same works as this one and are cited by the same works as this one.
    1. Susan D Hester & Julio M Belmonte & J Scott Gens & Sherry G Clendenon & James A Glazier, 2011. "A Multi-cell, Multi-scale Model of Vertebrate Segmentation and Somite Formation," PLOS Computational Biology, Public Library of Science, vol. 7(10), pages 1-32, October.
    2. Mayu Sugiyama & Takashi Saitou & Hiroshi Kurokawa & Asako Sakaue-Sawano & Takeshi Imamura & Atsushi Miyawaki & Tadahiro Iimura, 2014. "Live Imaging-Based Model Selection Reveals Periodic Regulation of the Stochastic G1/S Phase Transition in Vertebrate Axial Development," PLOS Computational Biology, Public Library of Science, vol. 10(12), pages 1-16, December.
    3. Jung Hun Park & Gábor Holló & Yolanda Schaerli, 2024. "From resonance to chaos by modulating spatiotemporal patterns through a synthetic optogenetic oscillator," Nature Communications, Nature, vol. 15(1), pages 1-13, December.
    4. Kemal Keseroglu & Oriana Q. H. Zinani & Sevdenur Keskin & Hannah Seawall & Eslim E. Alpay & Ertuğrul M. Özbudak, 2023. "Stochastic gene expression and environmental stressors trigger variable somite segmentation phenotypes," Nature Communications, Nature, vol. 14(1), pages 1-9, December.
    5. Amandine Gillet & Katrina E. Jones & Stephanie E. Pierce, 2024. "Repatterning of mammalian backbone regionalization in cetaceans," Nature Communications, Nature, vol. 15(1), pages 1-13, December.
    6. Yi-Cheng Chang & Jan Manent & Jan Schroeder & Siew Fen Lisa Wong & Gabriel M. Hauswirth & Natalia A. Shylo & Emma L. Moore & Annita Achilleos & Victoria Garside & Jose M. Polo & Paul Trainor & Edwina , 2022. "Nr6a1 controls Hox expression dynamics and is a master regulator of vertebrate trunk development," Nature Communications, Nature, vol. 13(1), pages 1-19, December.
    7. Alan J Terry & Marc Sturrock & J Kim Dale & Miguel Maroto & Mark A J Chaplain, 2011. "A Spatio-Temporal Model of Notch Signalling in the Zebrafish Segmentation Clock: Conditions for Synchronised Oscillatory Dynamics," PLOS ONE, Public Library of Science, vol. 6(2), pages 1-18, February.

    More about this item

    Statistics

    Access and download statistics

    Corrections

    All material on this site has been provided by the respective publishers and authors. You can help correct errors and omissions. When requesting a correction, please mention this item's handle: RePEc:plo:pcbi00:1007931. See general information about how to correct material in RePEc.

    If you have authored this item and are not yet registered with RePEc, we encourage you to do it here. This allows to link your profile to this item. It also allows you to accept potential citations to this item that we are uncertain about.

    If CitEc recognized a bibliographic reference but did not link an item in RePEc to it, you can help with this form .

    If you know of missing items citing this one, you can help us creating those links by adding the relevant references in the same way as above, for each refering item. If you are a registered author of this item, you may also want to check the "citations" tab in your RePEc Author Service profile, as there may be some citations waiting for confirmation.

    For technical questions regarding this item, or to correct its authors, title, abstract, bibliographic or download information, contact: ploscompbiol (email available below). General contact details of provider: https://journals.plos.org/ploscompbiol/ .

    Please note that corrections may take a couple of weeks to filter through the various RePEc services.

    IDEAS is a RePEc service. RePEc uses bibliographic data supplied by the respective publishers.