IDEAS home Printed from https://ideas.repec.org/a/nat/natcom/v15y2024i1d10.1038_s41467-024-51963-w.html
   My bibliography  Save this article

Repatterning of mammalian backbone regionalization in cetaceans

Author

Listed:
  • Amandine Gillet

    (University of Manchester
    Harvard University)

  • Katrina E. Jones

    (University of Manchester)

  • Stephanie E. Pierce

    (Harvard University)

Abstract

Cetacean reinvasion of the aquatic realm is an iconic ecological transition that led to drastic modifications of the mammalian body plan, especially in the axial skeleton. Relative to the vertebral column of other mammals that is subdivided into numerous anatomical regions, regional boundaries of the cetacean backbone appear obscured. Whether the traditional mammalian regions are present in cetaceans but hard to detect due to anatomical homogenization or if regions have been entirely repatterned remains unresolved. Here we combine a segmented linear regression approach with spectral clustering to quantitatively investigate the number, position, and homology of vertebral regions across 62 species from all major cetacean clades. We propose the Nested Regions hypothesis under which the cetacean backbone is composed of six homologous modules subdivided into six to nine post-cervical regions, with the degree of regionalization dependent on vertebral count and ecology. Compared to terrestrial mammals, the cetacean backbone is less regionalized in the precaudal segment but more regionalized in the caudal segment, indicating repatterning of the vertebral column associated with the transition from limb-powered to axial-driven locomotion.

Suggested Citation

  • Amandine Gillet & Katrina E. Jones & Stephanie E. Pierce, 2024. "Repatterning of mammalian backbone regionalization in cetaceans," Nature Communications, Nature, vol. 15(1), pages 1-13, December.
  • Handle: RePEc:nat:natcom:v:15:y:2024:i:1:d:10.1038_s41467-024-51963-w
    DOI: 10.1038/s41467-024-51963-w
    as

    Download full text from publisher

    File URL: https://www.nature.com/articles/s41467-024-51963-w
    File Function: Abstract
    Download Restriction: no

    File URL: https://libkey.io/10.1038/s41467-024-51963-w?utm_source=ideas
    LibKey link: if access is restricted and if your library uses this service, LibKey will redirect you to where you can use your library subscription to access this item
    ---><---

    References listed on IDEAS

    as
    1. Jason J. Head & P. David Polly, 2015. "Evolution of the snake body form reveals homoplasy in amniote Hox gene function," Nature, Nature, vol. 520(7545), pages 86-89, April.
    2. Céline Gomez & Ertuğrul M. Özbudak & Joshua Wunderlich & Diana Baumann & Julian Lewis & Olivier Pourquié, 2008. "Control of segment number in vertebrate embryos," Nature, Nature, vol. 454(7202), pages 335-339, July.
    3. Johan Lindgren & Hani F. Kaddumi & Michael J. Polcyn, 2013. "Soft tissue preservation in a fossil marine lizard with a bilobed tail fin," Nature Communications, Nature, vol. 4(1), pages 1-8, December.
    Full references (including those not matched with items on IDEAS)

    Most related items

    These are the items that most often cite the same works as this one and are cited by the same works as this one.
    1. Mayu Sugiyama & Takashi Saitou & Hiroshi Kurokawa & Asako Sakaue-Sawano & Takeshi Imamura & Atsushi Miyawaki & Tadahiro Iimura, 2014. "Live Imaging-Based Model Selection Reveals Periodic Regulation of the Stochastic G1/S Phase Transition in Vertebrate Axial Development," PLOS Computational Biology, Public Library of Science, vol. 10(12), pages 1-16, December.
    2. Jung Hun Park & Gábor Holló & Yolanda Schaerli, 2024. "From resonance to chaos by modulating spatiotemporal patterns through a synthetic optogenetic oscillator," Nature Communications, Nature, vol. 15(1), pages 1-13, December.
    3. Kemal Keseroglu & Oriana Q. H. Zinani & Sevdenur Keskin & Hannah Seawall & Eslim E. Alpay & Ertuğrul M. Özbudak, 2023. "Stochastic gene expression and environmental stressors trigger variable somite segmentation phenotypes," Nature Communications, Nature, vol. 14(1), pages 1-9, December.
    4. Yi-Cheng Chang & Jan Manent & Jan Schroeder & Siew Fen Lisa Wong & Gabriel M. Hauswirth & Natalia A. Shylo & Emma L. Moore & Annita Achilleos & Victoria Garside & Jose M. Polo & Paul Trainor & Edwina , 2022. "Nr6a1 controls Hox expression dynamics and is a master regulator of vertebrate trunk development," Nature Communications, Nature, vol. 13(1), pages 1-19, December.

    More about this item

    Statistics

    Access and download statistics

    Corrections

    All material on this site has been provided by the respective publishers and authors. You can help correct errors and omissions. When requesting a correction, please mention this item's handle: RePEc:nat:natcom:v:15:y:2024:i:1:d:10.1038_s41467-024-51963-w. See general information about how to correct material in RePEc.

    If you have authored this item and are not yet registered with RePEc, we encourage you to do it here. This allows to link your profile to this item. It also allows you to accept potential citations to this item that we are uncertain about.

    If CitEc recognized a bibliographic reference but did not link an item in RePEc to it, you can help with this form .

    If you know of missing items citing this one, you can help us creating those links by adding the relevant references in the same way as above, for each refering item. If you are a registered author of this item, you may also want to check the "citations" tab in your RePEc Author Service profile, as there may be some citations waiting for confirmation.

    For technical questions regarding this item, or to correct its authors, title, abstract, bibliographic or download information, contact: Sonal Shukla or Springer Nature Abstracting and Indexing (email available below). General contact details of provider: http://www.nature.com .

    Please note that corrections may take a couple of weeks to filter through the various RePEc services.

    IDEAS is a RePEc service. RePEc uses bibliographic data supplied by the respective publishers.