IDEAS home Printed from https://ideas.repec.org/a/plo/pone00/0130751.html
   My bibliography  Save this article

Behavior of Early Warnings near the Critical Temperature in the Two-Dimensional Ising Model

Author

Listed:
  • Irving O Morales
  • Emmanuel Landa
  • Carlos Calderon Angeles
  • Juan C Toledo
  • Ana Leonor Rivera
  • Joel Mendoza Temis
  • Alejandro Frank

Abstract

Among the properties that are common to complex systems, the presence of critical thresholds in the dynamics of the system is one of the most important. Recently, there has been interest in the universalities that occur in the behavior of systems near critical points. These universal properties make it possible to estimate how far a system is from a critical threshold. Several early-warning signals have been reported in time series representing systems near catastrophic shifts. The proper understanding of these early-warnings may allow the prediction and perhaps control of these dramatic shifts in a wide variety of systems. In this paper we analyze this universal behavior for a system that is a paradigm of phase transitions, the Ising model. We study the behavior of the early-warning signals and the way the temporal correlations of the system increase when the system is near the critical point.

Suggested Citation

  • Irving O Morales & Emmanuel Landa & Carlos Calderon Angeles & Juan C Toledo & Ana Leonor Rivera & Joel Mendoza Temis & Alejandro Frank, 2015. "Behavior of Early Warnings near the Critical Temperature in the Two-Dimensional Ising Model," PLOS ONE, Public Library of Science, vol. 10(6), pages 1-20, June.
  • Handle: RePEc:plo:pone00:0130751
    DOI: 10.1371/journal.pone.0130751
    as

    Download full text from publisher

    File URL: https://journals.plos.org/plosone/article?id=10.1371/journal.pone.0130751
    Download Restriction: no

    File URL: https://journals.plos.org/plosone/article/file?id=10.1371/journal.pone.0130751&type=printable
    Download Restriction: no

    File URL: https://libkey.io/10.1371/journal.pone.0130751?utm_source=ideas
    LibKey link: if access is restricted and if your library uses this service, LibKey will redirect you to where you can use your library subscription to access this item
    ---><---

    References listed on IDEAS

    as
    1. Fatimah Abdul Razak & Henrik Jeldtoft Jensen, 2014. "Quantifying ‘Causality’ in Complex Systems: Understanding Transfer Entropy," PLOS ONE, Public Library of Science, vol. 9(6), pages 1-14, June.
    Full references (including those not matched with items on IDEAS)

    Citations

    Citations are extracted by the CitEc Project, subscribe to its RSS feed for this item.
    as


    Cited by:

    1. Orozco-Fuentes, S. & Griffiths, G. & Holmes, M.J. & Ettelaie, R. & Smith, J. & Baggaley, A.W. & Parker, N.G., 2019. "Early warning signals in plant disease outbreaks," Ecological Modelling, Elsevier, vol. 393(C), pages 12-19.

    Most related items

    These are the items that most often cite the same works as this one and are cited by the same works as this one.
    1. Coulibaly, Saliya & Bessin, Florent & Clerc, Marcel G. & Mussot, Arnaud, 2022. "Precursors-driven machine learning prediction of chaotic extreme pulses in Kerr resonators," Chaos, Solitons & Fractals, Elsevier, vol. 160(C).
    2. Angeliki Papana & Catherine Kyrtsou & Dimitris Kugiumtzis & Cees Diks, 2017. "Assessment of resampling methods for causality testing: A note on the US inflation behavior," PLOS ONE, Public Library of Science, vol. 12(7), pages 1-20, July.
    3. Xiaogeng Wan & Lanxi Xu, 2018. "A study for multiscale information transfer measures based on conditional mutual information," PLOS ONE, Public Library of Science, vol. 13(12), pages 1-30, December.
    4. Carlos F Alvarez & Luis E Palafox & Leocundo Aguilar & Mauricio A Sanchez & Luis G Martinez, 2016. "Using Link Disconnection Entropy Disorder to Detect Fast Moving Nodes in MANETs," PLOS ONE, Public Library of Science, vol. 11(5), pages 1-15, May.
    5. Augusto Anguita-Ruiz & Alberto Segura-Delgado & Rafael Alcalá & Concepción M Aguilera & Jesús Alcalá-Fdez, 2020. "eXplainable Artificial Intelligence (XAI) for the identification of biologically relevant gene expression patterns in longitudinal human studies, insights from obesity research," PLOS Computational Biology, Public Library of Science, vol. 16(4), pages 1-34, April.

    More about this item

    Statistics

    Access and download statistics

    Corrections

    All material on this site has been provided by the respective publishers and authors. You can help correct errors and omissions. When requesting a correction, please mention this item's handle: RePEc:plo:pone00:0130751. See general information about how to correct material in RePEc.

    If you have authored this item and are not yet registered with RePEc, we encourage you to do it here. This allows to link your profile to this item. It also allows you to accept potential citations to this item that we are uncertain about.

    If CitEc recognized a bibliographic reference but did not link an item in RePEc to it, you can help with this form .

    If you know of missing items citing this one, you can help us creating those links by adding the relevant references in the same way as above, for each refering item. If you are a registered author of this item, you may also want to check the "citations" tab in your RePEc Author Service profile, as there may be some citations waiting for confirmation.

    For technical questions regarding this item, or to correct its authors, title, abstract, bibliographic or download information, contact: plosone (email available below). General contact details of provider: https://journals.plos.org/plosone/ .

    Please note that corrections may take a couple of weeks to filter through the various RePEc services.

    IDEAS is a RePEc service. RePEc uses bibliographic data supplied by the respective publishers.