IDEAS home Printed from https://ideas.repec.org/a/plo/pcbi00/1007494.html
   My bibliography  Save this article

Limits on amplifiers of natural selection under death-Birth updating

Author

Listed:
  • Josef Tkadlec
  • Andreas Pavlogiannis
  • Krishnendu Chatterjee
  • Martin A Nowak

Abstract

The fixation probability of a single mutant invading a population of residents is among the most widely-studied quantities in evolutionary dynamics. Amplifiers of natural selection are population structures that increase the fixation probability of advantageous mutants, compared to well-mixed populations. Extensive studies have shown that many amplifiers exist for the Birth-death Moran process, some of them substantially increasing the fixation probability or even guaranteeing fixation in the limit of large population size. On the other hand, no amplifiers are known for the death-Birth Moran process, and computer-assisted exhaustive searches have failed to discover amplification. In this work we resolve this disparity, by showing that any amplification under death-Birth updating is necessarily bounded and transient. Our boundedness result states that even if a population structure does amplify selection, the resulting fixation probability is close to that of the well-mixed population. Our transience result states that for any population structure there exists a threshold r⋆ such that the population structure ceases to amplify selection if the mutant fitness advantage r is larger than r⋆. Finally, we also extend the above results to δ-death-Birth updating, which is a combination of Birth-death and death-Birth updating. On the positive side, we identify population structures that maintain amplification for a wide range of values r and δ. These results demonstrate that amplification of natural selection depends on the specific mechanisms of the evolutionary process.Author summary: Extensive literature exists on amplifiers of natural selection for the Birth-death Moran process, but no amplifiers are known for the death-Birth Moran process. Here we show that if amplifiers exist under death-Birth updating, they must be bounded and transient. Boundedness implies weak amplification, and transience implies amplification for only a limited range of the mutant fitness advantage. These results demonstrate that amplification depends on the specific mechanisms of the evolutionary process.

Suggested Citation

  • Josef Tkadlec & Andreas Pavlogiannis & Krishnendu Chatterjee & Martin A Nowak, 2020. "Limits on amplifiers of natural selection under death-Birth updating," PLOS Computational Biology, Public Library of Science, vol. 16(1), pages 1-13, January.
  • Handle: RePEc:plo:pcbi00:1007494
    DOI: 10.1371/journal.pcbi.1007494
    as

    Download full text from publisher

    File URL: https://journals.plos.org/ploscompbiol/article?id=10.1371/journal.pcbi.1007494
    Download Restriction: no

    File URL: https://journals.plos.org/ploscompbiol/article/file?id=10.1371/journal.pcbi.1007494&type=printable
    Download Restriction: no

    File URL: https://libkey.io/10.1371/journal.pcbi.1007494?utm_source=ideas
    LibKey link: if access is restricted and if your library uses this service, LibKey will redirect you to where you can use your library subscription to access this item
    ---><---

    References listed on IDEAS

    as
    1. Fernando Alcalde Cuesta & Pablo González Sequeiros & Álvaro Lozano Rojo, 2018. "Evolutionary regime transitions in structured populations," PLOS ONE, Public Library of Science, vol. 13(11), pages 1-18, November.
    2. Benjamin Allen & Christine Sample & Robert Jencks & James Withers & Patricia Steinhagen & Lori Brizuela & Joshua Kolodny & Darren Parke & Gabor Lippner & Yulia A Dementieva, 2020. "Transient amplifiers of selection and reducers of fixation for death-Birth updating on graphs," PLOS Computational Biology, Public Library of Science, vol. 16(1), pages 1-20, January.
    3. Benjamin Allen & Gabor Lippner & Yu-Ting Chen & Babak Fotouhi & Naghmeh Momeni & Shing-Tung Yau & Martin A. Nowak, 2017. "Evolutionary dynamics on any population structure," Nature, Nature, vol. 544(7649), pages 227-230, April.
    4. Erez Lieberman & Christoph Hauert & Martin A. Nowak, 2005. "Evolutionary dynamics on graphs," Nature, Nature, vol. 433(7023), pages 312-316, January.
    5. McCandlish, David M. & Epstein, Charles L. & Plotkin, Joshua B., 2015. "Formal properties of the probability of fixation: Identities, inequalities and approximations," Theoretical Population Biology, Elsevier, vol. 99(C), pages 98-113.
    6. Christoph Hauert & Michael Doebeli, 2004. "Spatial structure often inhibits the evolution of cooperation in the snowdrift game," Nature, Nature, vol. 428(6983), pages 643-646, April.
    7. F. Débarre & C. Hauert & M. Doebeli, 2014. "Social evolution in structured populations," Nature Communications, Nature, vol. 5(1), pages 1-7, May.
    8. Hisashi Ohtsuki & Christoph Hauert & Erez Lieberman & Martin A. Nowak, 2006. "A simple rule for the evolution of cooperation on graphs and social networks," Nature, Nature, vol. 441(7092), pages 502-505, May.
    9. C. Hadjichrysanthou & M. Broom & J. Rychtář, 2011. "Evolutionary Games on Star Graphs Under Various Updating Rules," Dynamic Games and Applications, Springer, vol. 1(3), pages 386-407, September.
    10. Laura Hindersin & Arne Traulsen, 2015. "Most Undirected Random Graphs Are Amplifiers of Selection for Birth-Death Dynamics, but Suppressors of Selection for Death-Birth Dynamics," PLOS Computational Biology, Public Library of Science, vol. 11(11), pages 1-14, November.
    11. Joshua Zukewich & Venu Kurella & Michael Doebeli & Christoph Hauert, 2013. "Consolidating Birth-Death and Death-Birth Processes in Structured Populations," PLOS ONE, Public Library of Science, vol. 8(1), pages 1-7, January.
    Full references (including those not matched with items on IDEAS)

    Citations

    Citations are extracted by the CitEc Project, subscribe to its RSS feed for this item.
    as


    Cited by:

    1. Mark Broom & Igor V. Erovenko & Jan Rychtář, 2021. "Modelling Evolution in Structured Populations Involving Multiplayer Interactions," Dynamic Games and Applications, Springer, vol. 11(2), pages 270-293, June.
    2. Benjamin Allen & Christine Sample & Robert Jencks & James Withers & Patricia Steinhagen & Lori Brizuela & Joshua Kolodny & Darren Parke & Gabor Lippner & Yulia A Dementieva, 2020. "Transient amplifiers of selection and reducers of fixation for death-Birth updating on graphs," PLOS Computational Biology, Public Library of Science, vol. 16(1), pages 1-20, January.
    3. Kamran Kaveh & Alex McAvoy & Krishnendu Chatterjee & Martin A Nowak, 2020. "The Moran process on 2-chromatic graphs," PLOS Computational Biology, Public Library of Science, vol. 16(11), pages 1-18, November.

    Most related items

    These are the items that most often cite the same works as this one and are cited by the same works as this one.
    1. Benjamin Allen & Christine Sample & Robert Jencks & James Withers & Patricia Steinhagen & Lori Brizuela & Joshua Kolodny & Darren Parke & Gabor Lippner & Yulia A Dementieva, 2020. "Transient amplifiers of selection and reducers of fixation for death-Birth updating on graphs," PLOS Computational Biology, Public Library of Science, vol. 16(1), pages 1-20, January.
    2. Fabio Della Rossa & Fabio Dercole & Anna Di Meglio, 2020. "Direct Reciprocity and Model-Predictive Strategy Update Explain the Network Reciprocity Observed in Socioeconomic Networks," Games, MDPI, vol. 11(1), pages 1-28, March.
    3. Sarkar, Bijan, 2021. "The cooperation–defection evolution on social networks," Physica A: Statistical Mechanics and its Applications, Elsevier, vol. 584(C).
    4. Mark Broom & Igor V. Erovenko & Jan Rychtář, 2021. "Modelling Evolution in Structured Populations Involving Multiplayer Interactions," Dynamic Games and Applications, Springer, vol. 11(2), pages 270-293, June.
    5. Fulin Guo, 2023. "Experience-weighted attraction learning in network coordination games," Papers 2310.18835, arXiv.org.
    6. McAvoy, Alex & Fraiman, Nicolas & Hauert, Christoph & Wakeley, John & Nowak, Martin A., 2018. "Public goods games in populations with fluctuating size," Theoretical Population Biology, Elsevier, vol. 121(C), pages 72-84.
    7. Liu, Xuesong & Pan, Qiuhui & He, Mingfeng & Liu, Aizhi, 2019. "Promotion of cooperation in evolutionary game dynamics under asymmetric information," Physica A: Statistical Mechanics and its Applications, Elsevier, vol. 521(C), pages 258-266.
    8. Hendrik Richter, 2020. "Evolution of Cooperation for Multiple Mutant Configurations on All Regular Graphs with N ≤ 14 Players," Games, MDPI, vol. 11(1), pages 1-18, February.
    9. Jorge Peña & Bin Wu & Jordi Arranz & Arne Traulsen, 2016. "Evolutionary Games of Multiplayer Cooperation on Graphs," PLOS Computational Biology, Public Library of Science, vol. 12(8), pages 1-15, August.
    10. Li, Bin-Quan & Wu, Zhi-Xi & Guan, Jian-Yue, 2022. "Critical thresholds of benefit distribution in an extended snowdrift game model," Chaos, Solitons & Fractals, Elsevier, vol. 157(C).
    11. Sakiyama, Tomoko, 2021. "A power law network in an evolutionary hawk–dove game," Chaos, Solitons & Fractals, Elsevier, vol. 146(C).
    12. Qi Su & Lei Zhou & Long Wang, 2019. "Evolutionary multiplayer games on graphs with edge diversity," PLOS Computational Biology, Public Library of Science, vol. 15(4), pages 1-22, April.
    13. Yunming Xiao & Bin Wu, 2019. "Close spatial arrangement of mutants favors and disfavors fixation," PLOS Computational Biology, Public Library of Science, vol. 15(9), pages 1-20, September.
    14. Wes Maciejewski & Feng Fu & Christoph Hauert, 2014. "Evolutionary Game Dynamics in Populations with Heterogenous Structures," PLOS Computational Biology, Public Library of Science, vol. 10(4), pages 1-16, April.
    15. Alex McAvoy & Christoph Hauert, 2015. "Asymmetric Evolutionary Games," PLOS Computational Biology, Public Library of Science, vol. 11(8), pages 1-26, August.
    16. Swami Iyer & Timothy Killingback, 2020. "Evolution of Cooperation in Social Dilemmas with Assortative Interactions," Games, MDPI, vol. 11(4), pages 1-31, September.
    17. Christian Hilbe & Maria Kleshnina & Kateřina Staňková, 2023. "Evolutionary Games and Applications: Fifty Years of ‘The Logic of Animal Conflict’," Dynamic Games and Applications, Springer, vol. 13(4), pages 1035-1048, December.
    18. Li, Ya & Chen, Shanxiong & Niu, Ben, 2018. "Reward depending on public funds stimulates cooperation in spatial prisoner’s dilemma games," Chaos, Solitons & Fractals, Elsevier, vol. 114(C), pages 38-45.
    19. Mahdi Hajihashemi & Keivan Aghababaei Samani, 2022. "Multi-strategy evolutionary games: A Markov chain approach," PLOS ONE, Public Library of Science, vol. 17(2), pages 1-17, February.
    20. Yao Meng & Sean P. Cornelius & Yang-Yu Liu & Aming Li, 2024. "Dynamics of collective cooperation under personalised strategy updates," Nature Communications, Nature, vol. 15(1), pages 1-11, December.

    More about this item

    Statistics

    Access and download statistics

    Corrections

    All material on this site has been provided by the respective publishers and authors. You can help correct errors and omissions. When requesting a correction, please mention this item's handle: RePEc:plo:pcbi00:1007494. See general information about how to correct material in RePEc.

    If you have authored this item and are not yet registered with RePEc, we encourage you to do it here. This allows to link your profile to this item. It also allows you to accept potential citations to this item that we are uncertain about.

    If CitEc recognized a bibliographic reference but did not link an item in RePEc to it, you can help with this form .

    If you know of missing items citing this one, you can help us creating those links by adding the relevant references in the same way as above, for each refering item. If you are a registered author of this item, you may also want to check the "citations" tab in your RePEc Author Service profile, as there may be some citations waiting for confirmation.

    For technical questions regarding this item, or to correct its authors, title, abstract, bibliographic or download information, contact: ploscompbiol (email available below). General contact details of provider: https://journals.plos.org/ploscompbiol/ .

    Please note that corrections may take a couple of weeks to filter through the various RePEc services.

    IDEAS is a RePEc service. RePEc uses bibliographic data supplied by the respective publishers.