IDEAS home Printed from https://ideas.repec.org/a/plo/pcbi00/1007331.html
   My bibliography  Save this article

A flexible and generalizable model of online latent-state learning

Author

Listed:
  • Amy L Cochran
  • Josh M Cisler

Abstract

Many models of classical conditioning fail to describe important phenomena, notably the rapid return of fear after extinction. To address this shortfall, evidence converged on the idea that learning agents rely on latent-state inferences, i.e. an ability to index disparate associations from cues to rewards (or penalties) and infer which index (i.e. latent state) is presently active. Our goal was to develop a model of latent-state inferences that uses latent states to predict rewards from cues efficiently and that can describe behavior in a diverse set of experiments. The resulting model combines a Rescorla-Wagner rule, for which updates to associations are proportional to prediction error, with an approximate Bayesian rule, for which beliefs in latent states are proportional to prior beliefs and an approximate likelihood based on current associations. In simulation, we demonstrate the model’s ability to reproduce learning effects both famously explained and not explained by the Rescorla-Wagner model, including rapid return of fear after extinction, the Hall-Pearce effect, partial reinforcement extinction effect, backwards blocking, and memory modification. Lastly, we derive our model as an online algorithm to maximum likelihood estimation, demonstrating it is an efficient approach to outcome prediction. Establishing such a framework is a key step towards quantifying normative and pathological ranges of latent-state inferences in various contexts.Author summary: Computational researchers are increasingly interested in a structured form of learning known as latent-state inferences. Latent-state inferences is a type of learning that involves categorizing, generalizing, and recalling disparate associations between observations in one’s environment and is used in situations when the correct association is latent or unknown. This type of learning has been used to explain overgeneralization of a fear memory and the cognitive role of certain brain regions important to cognitive neuroscience and psychiatry. Accordingly, latent-state inferences are an important area of inquiry. Through simulation and theory, we establish a new model of latent-state inferences. Moving forward, we aim to use this framework to measure latent-state inferences in healthy and psychiatric populations.

Suggested Citation

  • Amy L Cochran & Josh M Cisler, 2019. "A flexible and generalizable model of online latent-state learning," PLOS Computational Biology, Public Library of Science, vol. 15(9), pages 1-31, September.
  • Handle: RePEc:plo:pcbi00:1007331
    DOI: 10.1371/journal.pcbi.1007331
    as

    Download full text from publisher

    File URL: https://journals.plos.org/ploscompbiol/article?id=10.1371/journal.pcbi.1007331
    Download Restriction: no

    File URL: https://journals.plos.org/ploscompbiol/article/file?id=10.1371/journal.pcbi.1007331&type=printable
    Download Restriction: no

    File URL: https://libkey.io/10.1371/journal.pcbi.1007331?utm_source=ideas
    LibKey link: if access is restricted and if your library uses this service, LibKey will redirect you to where you can use your library subscription to access this item
    ---><---

    References listed on IDEAS

    as
    1. Daniela Schiller & Marie-H. Monfils & Candace M. Raio & David C. Johnson & Joseph E. LeDoux & Elizabeth A. Phelps, 2010. "Preventing the return of fear in humans using reconsolidation update mechanisms," Nature, Nature, vol. 463(7277), pages 49-53, January.
    2. Nathaniel D. Daw & John P. O'Doherty & Peter Dayan & Ben Seymour & Raymond J. Dolan, 2006. "Cortical substrates for exploratory decisions in humans," Nature, Nature, vol. 441(7095), pages 876-879, June.
    3. Olivier Cappé & Eric Moulines, 2009. "On‐line expectation–maximization algorithm for latent data models," Journal of the Royal Statistical Society Series B, Royal Statistical Society, vol. 71(3), pages 593-613, June.
    Full references (including those not matched with items on IDEAS)

    Most related items

    These are the items that most often cite the same works as this one and are cited by the same works as this one.
    1. Yongping Bao & Ludwig Danwitz & Fabian Dvorak & Sebastian Fehrler & Lars Hornuf & Hsuan Yu Lin & Bettina von Helversen, 2022. "Similarity and Consistency in Algorithm-Guided Exploration," CESifo Working Paper Series 10188, CESifo.
    2. Maire, Florian & Moulines, Eric & Lefebvre, Sidonie, 2017. "Online EM for functional data," Computational Statistics & Data Analysis, Elsevier, vol. 111(C), pages 27-47.
    3. Shi, Yuwei & Herniman, John, 2023. "The role of expectation in innovation evolution: Exploring hype cycles," Technovation, Elsevier, vol. 119(C).
    4. Sashittal, Hemant C. & Sriramachandramurthy, Rajendran & Hodis, Monica, 2012. "Targeting college students on Facebook? How to stop wasting your money," Business Horizons, Elsevier, vol. 55(5), pages 495-507.
    5. Peter S. Riefer & Bradley C. Love, 2015. "Unfazed by Both the Bull and Bear: Strategic Exploration in Dynamic Environments," Games, MDPI, vol. 6(3), pages 1-11, August.
    6. Makoto Naruse & Eiji Yamamoto & Takashi Nakao & Takuma Akimoto & Hayato Saigo & Kazuya Okamura & Izumi Ojima & Georg Northoff & Hirokazu Hori, 2018. "Why is the environment important for decision making? Local reservoir model for choice-based learning," PLOS ONE, Public Library of Science, vol. 13(10), pages 1-17, October.
    7. Christina Fang & Daniel Levinthal, 2009. "Near-Term Liability of Exploitation: Exploration and Exploitation in Multistage Problems," Organization Science, INFORMS, vol. 20(3), pages 538-551, June.
    8. Hu, Yingyao & Kayaba, Yutaka & Shum, Matthew, 2013. "Nonparametric learning rules from bandit experiments: The eyes have it!," Games and Economic Behavior, Elsevier, vol. 81(C), pages 215-231.
    9. Jean Daunizeau & Hanneke E M den Ouden & Matthias Pessiglione & Stefan J Kiebel & Klaas E Stephan & Karl J Friston, 2010. "Observing the Observer (I): Meta-Bayesian Models of Learning and Decision-Making," PLOS ONE, Public Library of Science, vol. 5(12), pages 1-10, December.
    10. Shuji Shinohara & Nobuhito Manome & Kouta Suzuki & Ung-il Chung & Tatsuji Takahashi & Hiroshi Okamoto & Yukio Pegio Gunji & Yoshihiro Nakajima & Shunji Mitsuyoshi, 2020. "A new method of Bayesian causal inference in non-stationary environments," PLOS ONE, Public Library of Science, vol. 15(5), pages 1-22, May.
    11. Elyse H Norton & Stephen M Fleming & Nathaniel D Daw & Michael S Landy, 2017. "Suboptimal Criterion Learning in Static and Dynamic Environments," PLOS Computational Biology, Public Library of Science, vol. 13(1), pages 1-28, January.
    12. Mouna Maroun & Alexandra Kavushansky & Andrew Holmes & Cara Wellman & Helen Motanis, 2012. "Enhanced Extinction of Aversive Memories by High-Frequency Stimulation of the Rat Infralimbic Cortex," PLOS ONE, Public Library of Science, vol. 7(5), pages 1-8, May.
    13. Ayaka Kato & Kenji Morita, 2016. "Forgetting in Reinforcement Learning Links Sustained Dopamine Signals to Motivation," PLOS Computational Biology, Public Library of Science, vol. 12(10), pages 1-41, October.
    14. Elise Payzan-LeNestour & Peter Bossaerts, 2011. "Risk, Unexpected Uncertainty, and Estimation Uncertainty: Bayesian Learning in Unstable Settings," PLOS Computational Biology, Public Library of Science, vol. 7(1), pages 1-14, January.
    15. Pérez-Centeno, Victor, 2018. "Brain-driven entrepreneurship research: Expanded review and research agenda towards entrepreneurial enhancement," Working Papers 02/18, Institut für Mittelstandsforschung (IfM) Bonn.
    16. Oded Berger-Tal & Jonathan Nathan & Ehud Meron & David Saltz, 2014. "The Exploration-Exploitation Dilemma: A Multidisciplinary Framework," PLOS ONE, Public Library of Science, vol. 9(4), pages 1-8, April.
    17. Ian Krajbich & Todd Hare & Björn Bartling & Yosuke Morishima & Ernst Fehr, 2015. "A Common Mechanism Underlying Food Choice and Social Decisions," PLOS Computational Biology, Public Library of Science, vol. 11(10), pages 1-24, October.
    18. Maime Guan & Ryan Stokes & Joachim Vandekerckhove & Michael D. Lee, 2020. "A cognitive modeling analysis of risk in sequential choice tasks}," Judgment and Decision Making, Society for Judgment and Decision Making, vol. 15(5), pages 823-850, September.
    19. Megan E. Speer & Sandra Ibrahim & Daniela Schiller & Mauricio R. Delgado, 2021. "Finding positive meaning in memories of negative events adaptively updates memory," Nature Communications, Nature, vol. 12(1), pages 1-11, December.
    20. Yoav Kessler & Susan Vandermorris & Nigel Gopie & Alexander Daros & Gordon Winocur & Morris Moscovitch, 2014. "Divided Attention Improves Delayed, but Not Immediate Retrieval of a Consolidated Memory," PLOS ONE, Public Library of Science, vol. 9(3), pages 1-6, March.

    More about this item

    Statistics

    Access and download statistics

    Corrections

    All material on this site has been provided by the respective publishers and authors. You can help correct errors and omissions. When requesting a correction, please mention this item's handle: RePEc:plo:pcbi00:1007331. See general information about how to correct material in RePEc.

    If you have authored this item and are not yet registered with RePEc, we encourage you to do it here. This allows to link your profile to this item. It also allows you to accept potential citations to this item that we are uncertain about.

    If CitEc recognized a bibliographic reference but did not link an item in RePEc to it, you can help with this form .

    If you know of missing items citing this one, you can help us creating those links by adding the relevant references in the same way as above, for each refering item. If you are a registered author of this item, you may also want to check the "citations" tab in your RePEc Author Service profile, as there may be some citations waiting for confirmation.

    For technical questions regarding this item, or to correct its authors, title, abstract, bibliographic or download information, contact: ploscompbiol (email available below). General contact details of provider: https://journals.plos.org/ploscompbiol/ .

    Please note that corrections may take a couple of weeks to filter through the various RePEc services.

    IDEAS is a RePEc service. RePEc uses bibliographic data supplied by the respective publishers.