IDEAS home Printed from https://ideas.repec.org/a/plo/pcbi00/1007084.html
   My bibliography  Save this article

Machine and deep learning meet genome-scale metabolic modeling

Author

Listed:
  • Guido Zampieri
  • Supreeta Vijayakumar
  • Elisabeth Yaneske
  • Claudio Angione

Abstract

Omic data analysis is steadily growing as a driver of basic and applied molecular biology research. Core to the interpretation of complex and heterogeneous biological phenotypes are computational approaches in the fields of statistics and machine learning. In parallel, constraint-based metabolic modeling has established itself as the main tool to investigate large-scale relationships between genotype, phenotype, and environment. The development and application of these methodological frameworks have occurred independently for the most part, whereas the potential of their integration for biological, biomedical, and biotechnological research is less known. Here, we describe how machine learning and constraint-based modeling can be combined, reviewing recent works at the intersection of both domains and discussing the mathematical and practical aspects involved. We overlap systematic classifications from both frameworks, making them accessible to nonexperts. Finally, we delineate potential future scenarios, propose new joint theoretical frameworks, and suggest concrete points of investigation for this joint subfield. A multiview approach merging experimental and knowledge-driven omic data through machine learning methods can incorporate key mechanistic information in an otherwise biologically-agnostic learning process.

Suggested Citation

  • Guido Zampieri & Supreeta Vijayakumar & Elisabeth Yaneske & Claudio Angione, 2019. "Machine and deep learning meet genome-scale metabolic modeling," PLOS Computational Biology, Public Library of Science, vol. 15(7), pages 1-24, July.
  • Handle: RePEc:plo:pcbi00:1007084
    DOI: 10.1371/journal.pcbi.1007084
    as

    Download full text from publisher

    File URL: https://journals.plos.org/ploscompbiol/article?id=10.1371/journal.pcbi.1007084
    Download Restriction: no

    File URL: https://journals.plos.org/ploscompbiol/article/file?id=10.1371/journal.pcbi.1007084&type=printable
    Download Restriction: no

    File URL: https://libkey.io/10.1371/journal.pcbi.1007084?utm_source=ideas
    LibKey link: if access is restricted and if your library uses this service, LibKey will redirect you to where you can use your library subscription to access this item
    ---><---

    References listed on IDEAS

    as
    1. Minseung Kim & Navneet Rai & Violeta Zorraquino & Ilias Tagkopoulos, 2016. "Multi-omics integration accurately predicts cellular state in unexplored conditions for Escherichia coli," Nature Communications, Nature, vol. 7(1), pages 1-12, December.
    2. Joshua A. Lerman & Daniel R. Hyduke & Haythem Latif & Vasiliy A. Portnoy & Nathan E. Lewis & Jeffrey D. Orth & Alexandra C. Schrimpe-Rutledge & Richard D. Smith & Joshua N. Adkins & Karsten Zengler & , 2012. "In silico method for modelling metabolism and gene product expression at genome scale," Nature Communications, Nature, vol. 3(1), pages 1-10, January.
    3. David Heckmann & Colton J. Lloyd & Nathan Mih & Yuanchi Ha & Daniel C. Zielinski & Zachary B. Haiman & Abdelmoneim Amer Desouki & Martin J. Lercher & Bernhard O. Palsson, 2018. "Machine learning applied to enzyme turnover numbers reveals protein structural correlates and improves metabolic models," Nature Communications, Nature, vol. 9(1), pages 1-10, December.
    4. Stephen Gang Wu & Yuxuan Wang & Wu Jiang & Tolutola Oyetunde & Ruilian Yao & Xuehong Zhang & Kazuyuki Shimizu & Yinjie J Tang & Forrest Sheng Bao, 2016. "Rapid Prediction of Bacterial Heterotrophic Fluxomics Using Machine Learning and Constraint Programming," PLOS Computational Biology, Public Library of Science, vol. 12(4), pages 1-22, April.
    5. Viswanadham Sridhara & Austin G Meyer & Piyush Rai & Jeffrey E Barrick & Pradeep Ravikumar & Daniel Segrè & Claus O Wilke, 2014. "Predicting Growth Conditions from Internal Metabolic Fluxes in an In-Silico Model of E. coli," PLOS ONE, Public Library of Science, vol. 9(12), pages 1-22, December.
    6. Adi L Tarca & Vincent J Carey & Xue-wen Chen & Roberto Romero & Sorin Drăghici, 2007. "Machine Learning and Its Applications to Biology," PLOS Computational Biology, Public Library of Science, vol. 3(6), pages 1-11, June.
    7. Ali Ebrahim & Elizabeth Brunk & Justin Tan & Edward J. O'Brien & Donghyuk Kim & Richard Szubin & Joshua A. Lerman & Anna Lechner & Anand Sastry & Aarash Bordbar & Adam M. Feist & Bernhard O. Palsson, 2016. "Multi-omic data integration enables discovery of hidden biological regularities," Nature Communications, Nature, vol. 7(1), pages 1-9, December.
    8. Tolutola Oyetunde & Di Liu & Hector Garcia Martin & Yinjie J Tang, 2019. "Machine learning framework for assessment of microbial factory performance," PLOS ONE, Public Library of Science, vol. 14(1), pages 1-15, January.
    Full references (including those not matched with items on IDEAS)

    Citations

    Citations are extracted by the CitEc Project, subscribe to its RSS feed for this item.
    as


    Cited by:

    1. Léon Faure & Bastien Mollet & Wolfram Liebermeister & Jean-Loup Faulon, 2023. "A neural-mechanistic hybrid approach improving the predictive power of genome-scale metabolic models," Nature Communications, Nature, vol. 14(1), pages 1-14, December.
    2. Zhaoxiang Cai & Sofia Apolinário & Ana R. Baião & Clare Pacini & Miguel D. Sousa & Susana Vinga & Roger R. Reddel & Phillip J. Robinson & Mathew J. Garnett & Qing Zhong & Emanuel Gonçalves, 2024. "Synthetic augmentation of cancer cell line multi-omic datasets using unsupervised deep learning," Nature Communications, Nature, vol. 15(1), pages 1-12, December.
    3. Nam D Nguyen & Daifeng Wang, 2020. "Multiview learning for understanding functional multiomics," PLOS Computational Biology, Public Library of Science, vol. 16(4), pages 1-26, April.

    Most related items

    These are the items that most often cite the same works as this one and are cited by the same works as this one.
    1. Alexander Kroll & Yvan Rousset & Xiao-Pan Hu & Nina A. Liebrand & Martin J. Lercher, 2023. "Turnover number predictions for kinetically uncharacterized enzymes using machine and deep learning," Nature Communications, Nature, vol. 14(1), pages 1-14, December.
    2. Philipp Wendering & Marius Arend & Zahra Razaghi-Moghadam & Zoran Nikoloski, 2023. "Data integration across conditions improves turnover number estimates and metabolic predictions," Nature Communications, Nature, vol. 14(1), pages 1-12, December.
    3. Léon Faure & Bastien Mollet & Wolfram Liebermeister & Jean-Loup Faulon, 2023. "A neural-mechanistic hybrid approach improving the predictive power of genome-scale metabolic models," Nature Communications, Nature, vol. 14(1), pages 1-14, December.
    4. Stephen Gang Wu & Yuxuan Wang & Wu Jiang & Tolutola Oyetunde & Ruilian Yao & Xuehong Zhang & Kazuyuki Shimizu & Yinjie J Tang & Forrest Sheng Bao, 2016. "Rapid Prediction of Bacterial Heterotrophic Fluxomics Using Machine Learning and Constraint Programming," PLOS Computational Biology, Public Library of Science, vol. 12(4), pages 1-22, April.
    5. Früh, Linus & Kampen, Helge & Kerkow, Antje & Schaub, Günter A. & Walther, Doreen & Wieland, Ralf, 2018. "Modelling the potential distribution of an invasive mosquito species: comparative evaluation of four machine learning methods and their combinations," Ecological Modelling, Elsevier, vol. 388(C), pages 136-144.
    6. Hao Leng & Yinzhao Wang & Weishu Zhao & Stefan M. Sievert & Xiang Xiao, 2023. "Identification of a deep-branching thermophilic clade sheds light on early bacterial evolution," Nature Communications, Nature, vol. 14(1), pages 1-14, December.
    7. Asa Ben-Hur & Cheng Soon Ong & Sören Sonnenburg & Bernhard Schölkopf & Gunnar Rätsch, 2008. "Support Vector Machines and Kernels for Computational Biology," PLOS Computational Biology, Public Library of Science, vol. 4(10), pages 1-10, October.
    8. Ambros M. Gleixner & Daniel E. Steffy & Kati Wolter, 2016. "Iterative Refinement for Linear Programming," INFORMS Journal on Computing, INFORMS, vol. 28(3), pages 449-464, August.
    9. Wang, Jia & Hu, Jun & Shen, Shifei & Zhuang, Jun & Ni, Shunjiang, 2020. "Crime risk analysis through big data algorithm with urban metrics," Physica A: Statistical Mechanics and its Applications, Elsevier, vol. 545(C).
    10. Lior Shamir & John D Delaney & Nikita Orlov & D Mark Eckley & Ilya G Goldberg, 2010. "Pattern Recognition Software and Techniques for Biological Image Analysis," PLOS Computational Biology, Public Library of Science, vol. 6(11), pages 1-10, November.
    11. Joana Rosado Coelho & João André Carriço & Daniel Knight & Jose-Luis Martínez & Ian Morrissey & Marco Rinaldo Oggioni & Ana Teresa Freitas, 2013. "The Use of Machine Learning Methodologies to Analyse Antibiotic and Biocide Susceptibility in Staphylococcus aureus," PLOS ONE, Public Library of Science, vol. 8(2), pages 1-10, February.
    12. Shun Adachi, 2017. "Rigid geometry solves “curse of dimensionality” effects in clustering methods: An application to omics data," PLOS ONE, Public Library of Science, vol. 12(6), pages 1-20, June.
    13. Parag Parashar & Chun Han Chen & Chandni Akbar & Sze Ming Fu & Tejender S Rawat & Sparsh Pratik & Rajat Butola & Shih Han Chen & Albert S Lin, 2019. "Analytics-statistics mixed training and its fitness to semisupervised manufacturing," PLOS ONE, Public Library of Science, vol. 14(8), pages 1-18, August.
    14. Ribeiro, Haroldo V. & Lopes, Diego D. & Pessa, Arthur A.B. & Martins, Alvaro F. & da Cunha, Bruno R. & Gonçalves, Sebastián & Lenzi, Ervin K. & Hanley, Quentin S. & Perc, Matjaž, 2023. "Deep learning criminal networks," Chaos, Solitons & Fractals, Elsevier, vol. 172(C).
    15. Tolutola Oyetunde & Di Liu & Hector Garcia Martin & Yinjie J Tang, 2019. "Machine learning framework for assessment of microbial factory performance," PLOS ONE, Public Library of Science, vol. 14(1), pages 1-15, January.
    16. Arjun Patel & Dominic McGrosso & Ying Hefner & Anaamika Campeau & Anand V. Sastry & Svetlana Maurya & Kevin Rychel & David J. Gonzalez & Bernhard O. Palsson, 2024. "Proteome allocation is linked to transcriptional regulation through a modularized transcriptome," Nature Communications, Nature, vol. 15(1), pages 1-13, December.
    17. Dolores Wolfram & Ravi Starzl & Hubert Hackl & Derek Barclay & Theresa Hautz & Bettina Zelger & Gerald Brandacher & W P Andrew Lee & Nadine Eberhart & Yoram Vodovotz & Johann Pratschke & Gerhard Piere, 2014. "Insights from Computational Modeling in Inflammation and Acute Rejection in Limb Transplantation," PLOS ONE, Public Library of Science, vol. 9(6), pages 1-11, June.
    18. Han Yu & Huaxiang Deng & Jiahui He & Jay D. Keasling & Xiaozhou Luo, 2023. "UniKP: a unified framework for the prediction of enzyme kinetic parameters," Nature Communications, Nature, vol. 14(1), pages 1-13, December.
    19. Iván Domenzain & Benjamín Sánchez & Mihail Anton & Eduard J. Kerkhoven & Aarón Millán-Oropeza & Céline Henry & Verena Siewers & John P. Morrissey & Nikolaus Sonnenschein & Jens Nielsen, 2022. "Reconstruction of a catalogue of genome-scale metabolic models with enzymatic constraints using GECKO 2.0," Nature Communications, Nature, vol. 13(1), pages 1-13, December.
    20. Lyaqini, S. & Nachaoui, M. & Hadri, A., 2022. "An efficient primal-dual method for solving non-smooth machine learning problem," Chaos, Solitons & Fractals, Elsevier, vol. 155(C).

    More about this item

    Statistics

    Access and download statistics

    Corrections

    All material on this site has been provided by the respective publishers and authors. You can help correct errors and omissions. When requesting a correction, please mention this item's handle: RePEc:plo:pcbi00:1007084. See general information about how to correct material in RePEc.

    If you have authored this item and are not yet registered with RePEc, we encourage you to do it here. This allows to link your profile to this item. It also allows you to accept potential citations to this item that we are uncertain about.

    If CitEc recognized a bibliographic reference but did not link an item in RePEc to it, you can help with this form .

    If you know of missing items citing this one, you can help us creating those links by adding the relevant references in the same way as above, for each refering item. If you are a registered author of this item, you may also want to check the "citations" tab in your RePEc Author Service profile, as there may be some citations waiting for confirmation.

    For technical questions regarding this item, or to correct its authors, title, abstract, bibliographic or download information, contact: ploscompbiol (email available below). General contact details of provider: https://journals.plos.org/ploscompbiol/ .

    Please note that corrections may take a couple of weeks to filter through the various RePEc services.

    IDEAS is a RePEc service. RePEc uses bibliographic data supplied by the respective publishers.