IDEAS home Printed from https://ideas.repec.org/a/plo/pone00/0179180.html
   My bibliography  Save this article

Rigid geometry solves “curse of dimensionality” effects in clustering methods: An application to omics data

Author

Listed:
  • Shun Adachi

Abstract

The quality of samples preserved long term at ultralow temperatures has not been adequately studied. To improve our understanding, we need a strategy to analyze protein degradation and metabolism at subfreezing temperatures. To do this, we obtained liquid chromatography-mass spectrometry (LC/MS) data of calculated protein signal intensities in HEK-293 cells. Our first attempt at directly clustering the values failed, most likely due to the so-called “curse of dimensionality”. The clusters were not reproducible, and the outputs differed with different methods. By utilizing rigid geometry with a prime ideal I-adic (p-adic) metric, however, we rearranged the sample clusters into a meaningful and reproducible order, and the results were the same with each of the different clustering methods tested. Furthermore, we have also succeeded in application of this method to expression array data in similar situations. Thus, we eliminated the “curse of dimensionality” from the data set, at least in clustering methods. It is possible that our approach determines a characteristic value of systems that follow a Boltzmann distribution.

Suggested Citation

  • Shun Adachi, 2017. "Rigid geometry solves “curse of dimensionality” effects in clustering methods: An application to omics data," PLOS ONE, Public Library of Science, vol. 12(6), pages 1-20, June.
  • Handle: RePEc:plo:pone00:0179180
    DOI: 10.1371/journal.pone.0179180
    as

    Download full text from publisher

    File URL: https://journals.plos.org/plosone/article?id=10.1371/journal.pone.0179180
    Download Restriction: no

    File URL: https://journals.plos.org/plosone/article/file?id=10.1371/journal.pone.0179180&type=printable
    Download Restriction: no

    File URL: https://libkey.io/10.1371/journal.pone.0179180?utm_source=ideas
    LibKey link: if access is restricted and if your library uses this service, LibKey will redirect you to where you can use your library subscription to access this item
    ---><---

    References listed on IDEAS

    as
    1. Adi L Tarca & Vincent J Carey & Xue-wen Chen & Roberto Romero & Sorin Drăghici, 2007. "Machine Learning and Its Applications to Biology," PLOS Computational Biology, Public Library of Science, vol. 3(6), pages 1-11, June.
    2. Anshul Kundaje & Xiantong Xin & Changgui Lan & Steve Lianoglou & Mei Zhou & Li Zhang & Christina Leslie, 2008. "A Predictive Model of the Oxygen and Heme Regulatory Network in Yeast," PLOS Computational Biology, Public Library of Science, vol. 4(11), pages 1-21, November.
    Full references (including those not matched with items on IDEAS)

    Most related items

    These are the items that most often cite the same works as this one and are cited by the same works as this one.
    1. Stephen Gang Wu & Yuxuan Wang & Wu Jiang & Tolutola Oyetunde & Ruilian Yao & Xuehong Zhang & Kazuyuki Shimizu & Yinjie J Tang & Forrest Sheng Bao, 2016. "Rapid Prediction of Bacterial Heterotrophic Fluxomics Using Machine Learning and Constraint Programming," PLOS Computational Biology, Public Library of Science, vol. 12(4), pages 1-22, April.
    2. Früh, Linus & Kampen, Helge & Kerkow, Antje & Schaub, Günter A. & Walther, Doreen & Wieland, Ralf, 2018. "Modelling the potential distribution of an invasive mosquito species: comparative evaluation of four machine learning methods and their combinations," Ecological Modelling, Elsevier, vol. 388(C), pages 136-144.
    3. Asa Ben-Hur & Cheng Soon Ong & Sören Sonnenburg & Bernhard Schölkopf & Gunnar Rätsch, 2008. "Support Vector Machines and Kernels for Computational Biology," PLOS Computational Biology, Public Library of Science, vol. 4(10), pages 1-10, October.
    4. Wang, Jia & Hu, Jun & Shen, Shifei & Zhuang, Jun & Ni, Shunjiang, 2020. "Crime risk analysis through big data algorithm with urban metrics," Physica A: Statistical Mechanics and its Applications, Elsevier, vol. 545(C).
    5. Lior Shamir & John D Delaney & Nikita Orlov & D Mark Eckley & Ilya G Goldberg, 2010. "Pattern Recognition Software and Techniques for Biological Image Analysis," PLOS Computational Biology, Public Library of Science, vol. 6(11), pages 1-10, November.
    6. Joana Rosado Coelho & João André Carriço & Daniel Knight & Jose-Luis Martínez & Ian Morrissey & Marco Rinaldo Oggioni & Ana Teresa Freitas, 2013. "The Use of Machine Learning Methodologies to Analyse Antibiotic and Biocide Susceptibility in Staphylococcus aureus," PLOS ONE, Public Library of Science, vol. 8(2), pages 1-10, February.
    7. Parag Parashar & Chun Han Chen & Chandni Akbar & Sze Ming Fu & Tejender S Rawat & Sparsh Pratik & Rajat Butola & Shih Han Chen & Albert S Lin, 2019. "Analytics-statistics mixed training and its fitness to semisupervised manufacturing," PLOS ONE, Public Library of Science, vol. 14(8), pages 1-18, August.
    8. Ribeiro, Haroldo V. & Lopes, Diego D. & Pessa, Arthur A.B. & Martins, Alvaro F. & da Cunha, Bruno R. & Gonçalves, Sebastián & Lenzi, Ervin K. & Hanley, Quentin S. & Perc, Matjaž, 2023. "Deep learning criminal networks," Chaos, Solitons & Fractals, Elsevier, vol. 172(C).
    9. Dolores Wolfram & Ravi Starzl & Hubert Hackl & Derek Barclay & Theresa Hautz & Bettina Zelger & Gerald Brandacher & W P Andrew Lee & Nadine Eberhart & Yoram Vodovotz & Johann Pratschke & Gerhard Piere, 2014. "Insights from Computational Modeling in Inflammation and Acute Rejection in Limb Transplantation," PLOS ONE, Public Library of Science, vol. 9(6), pages 1-11, June.
    10. Lyaqini, S. & Nachaoui, M. & Hadri, A., 2022. "An efficient primal-dual method for solving non-smooth machine learning problem," Chaos, Solitons & Fractals, Elsevier, vol. 155(C).
    11. Malka N. Halgamuge, 2020. "Supervised Machine Learning Algorithms for Bioelectromagnetics: Prediction Models and Feature Selection Techniques Using Data from Weak Radiofrequency Radiation Effect on Human and Animals Cells," IJERPH, MDPI, vol. 17(12), pages 1-27, June.
    12. Dennis Pischel & Jörn H Buchbinder & Kai Sundmacher & Inna N Lavrik & Robert J Flassig, 2018. "A guide to automated apoptosis detection: How to make sense of imaging flow cytometry data," PLOS ONE, Public Library of Science, vol. 13(5), pages 1-17, May.
    13. Willcock, Simon & Martínez-López, Javier & Hooftman, Danny A.P. & Bagstad, Kenneth J. & Balbi, Stefano & Marzo, Alessia & Prato, Carlo & Sciandrello, Saverio & Signorello, Giovanni & Voigt, Brian & Vi, 2018. "Machine learning for ecosystem services," Ecosystem Services, Elsevier, vol. 33(PB), pages 165-174.
    14. Takaya Saito & Marc Rehmsmeier, 2015. "The Precision-Recall Plot Is More Informative than the ROC Plot When Evaluating Binary Classifiers on Imbalanced Datasets," PLOS ONE, Public Library of Science, vol. 10(3), pages 1-21, March.
    15. Xuejing Li & Casandra Panea & Chris H Wiggins & Valerie Reinke & Christina Leslie, 2010. "Learning “graph-mer” Motifs that Predict Gene Expression Trajectories in Development," PLOS Computational Biology, Public Library of Science, vol. 6(4), pages 1-13, April.
    16. Guido Zampieri & Supreeta Vijayakumar & Elisabeth Yaneske & Claudio Angione, 2019. "Machine and deep learning meet genome-scale metabolic modeling," PLOS Computational Biology, Public Library of Science, vol. 15(7), pages 1-24, July.
    17. Bahareh Torkzaban & Amir Hossein Kayvanjoo & Arman Ardalan & Soraya Mousavi & Roberto Mariotti & Luciana Baldoni & Esmaeil Ebrahimie & Mansour Ebrahimi & Mehdi Hosseini-Mazinani, 2015. "Machine Learning Based Classification of Microsatellite Variation: An Effective Approach for Phylogeographic Characterization of Olive Populations," PLOS ONE, Public Library of Science, vol. 10(11), pages 1-17, November.

    More about this item

    Statistics

    Access and download statistics

    Corrections

    All material on this site has been provided by the respective publishers and authors. You can help correct errors and omissions. When requesting a correction, please mention this item's handle: RePEc:plo:pone00:0179180. See general information about how to correct material in RePEc.

    If you have authored this item and are not yet registered with RePEc, we encourage you to do it here. This allows to link your profile to this item. It also allows you to accept potential citations to this item that we are uncertain about.

    If CitEc recognized a bibliographic reference but did not link an item in RePEc to it, you can help with this form .

    If you know of missing items citing this one, you can help us creating those links by adding the relevant references in the same way as above, for each refering item. If you are a registered author of this item, you may also want to check the "citations" tab in your RePEc Author Service profile, as there may be some citations waiting for confirmation.

    For technical questions regarding this item, or to correct its authors, title, abstract, bibliographic or download information, contact: plosone (email available below). General contact details of provider: https://journals.plos.org/plosone/ .

    Please note that corrections may take a couple of weeks to filter through the various RePEc services.

    IDEAS is a RePEc service. RePEc uses bibliographic data supplied by the respective publishers.