IDEAS home Printed from https://ideas.repec.org/a/nat/natcom/v7y2016i1d10.1038_ncomms13090.html
   My bibliography  Save this article

Multi-omics integration accurately predicts cellular state in unexplored conditions for Escherichia coli

Author

Listed:
  • Minseung Kim

    (University of California
    Genome Center, University of California)

  • Navneet Rai

    (Genome Center, University of California)

  • Violeta Zorraquino

    (Genome Center, University of California)

  • Ilias Tagkopoulos

    (University of California
    Genome Center, University of California)

Abstract

A significant obstacle in training predictive cell models is the lack of integrated data sources. We develop semi-supervised normalization pipelines and perform experimental characterization (growth, transcriptional, proteome) to create Ecomics, a consistent, quality-controlled multi-omics compendium for Escherichia coli with cohesive meta-data information. We then use this resource to train a multi-scale model that integrates four omics layers to predict genome-wide concentrations and growth dynamics. The genetic and environmental ontology reconstructed from the omics data is substantially different and complementary to the genetic and chemical ontologies. The integration of different layers confers an incremental increase in the prediction performance, as does the information about the known gene regulatory and protein-protein interactions. The predictive performance of the model ranges from 0.54 to 0.87 for the various omics layers, which far exceeds various baselines. This work provides an integrative framework of omics-driven predictive modelling that is broadly applicable to guide biological discovery.

Suggested Citation

  • Minseung Kim & Navneet Rai & Violeta Zorraquino & Ilias Tagkopoulos, 2016. "Multi-omics integration accurately predicts cellular state in unexplored conditions for Escherichia coli," Nature Communications, Nature, vol. 7(1), pages 1-12, December.
  • Handle: RePEc:nat:natcom:v:7:y:2016:i:1:d:10.1038_ncomms13090
    DOI: 10.1038/ncomms13090
    as

    Download full text from publisher

    File URL: https://www.nature.com/articles/ncomms13090
    File Function: Abstract
    Download Restriction: no

    File URL: https://libkey.io/10.1038/ncomms13090?utm_source=ideas
    LibKey link: if access is restricted and if your library uses this service, LibKey will redirect you to where you can use your library subscription to access this item
    ---><---

    Citations

    Citations are extracted by the CitEc Project, subscribe to its RSS feed for this item.
    as


    Cited by:

    1. Léon Faure & Bastien Mollet & Wolfram Liebermeister & Jean-Loup Faulon, 2023. "A neural-mechanistic hybrid approach improving the predictive power of genome-scale metabolic models," Nature Communications, Nature, vol. 14(1), pages 1-14, December.
    2. Guido Zampieri & Supreeta Vijayakumar & Elisabeth Yaneske & Claudio Angione, 2019. "Machine and deep learning meet genome-scale metabolic modeling," PLOS Computational Biology, Public Library of Science, vol. 15(7), pages 1-24, July.

    More about this item

    Statistics

    Access and download statistics

    Corrections

    All material on this site has been provided by the respective publishers and authors. You can help correct errors and omissions. When requesting a correction, please mention this item's handle: RePEc:nat:natcom:v:7:y:2016:i:1:d:10.1038_ncomms13090. See general information about how to correct material in RePEc.

    If you have authored this item and are not yet registered with RePEc, we encourage you to do it here. This allows to link your profile to this item. It also allows you to accept potential citations to this item that we are uncertain about.

    We have no bibliographic references for this item. You can help adding them by using this form .

    If you know of missing items citing this one, you can help us creating those links by adding the relevant references in the same way as above, for each refering item. If you are a registered author of this item, you may also want to check the "citations" tab in your RePEc Author Service profile, as there may be some citations waiting for confirmation.

    For technical questions regarding this item, or to correct its authors, title, abstract, bibliographic or download information, contact: Sonal Shukla or Springer Nature Abstracting and Indexing (email available below). General contact details of provider: http://www.nature.com .

    Please note that corrections may take a couple of weeks to filter through the various RePEc services.

    IDEAS is a RePEc service. RePEc uses bibliographic data supplied by the respective publishers.