IDEAS home Printed from https://ideas.repec.org/a/plo/pcbi00/1006832.html
   My bibliography  Save this article

Pan-cancer association of a centrosome amplification gene expression signature with genomic alterations and clinical outcome

Author

Listed:
  • Bernardo P de Almeida
  • André F Vieira
  • Joana Paredes
  • Mónica Bettencourt-Dias
  • Nuno L Barbosa-Morais

Abstract

Centrosome amplification (CA) is a common feature of human tumours and a promising target for cancer therapy. However, CA’s pan-cancer prevalence, molecular role in tumourigenesis and therapeutic value in the clinical setting are still largely unexplored. Here, we used a transcriptomic signature (CA20) to characterise the landscape of CA-associated gene expression in 9,721 tumours from The Cancer Genome Atlas (TCGA). CA20 is upregulated in cancer and associated with distinct clinical and molecular features of breast cancer, consistently with our experimental CA quantification in patient samples. Moreover, we show that CA20 upregulation is positively associated with genomic instability, alteration of specific chromosomal arms and C>T mutations, and we propose novel molecular players associated with CA in cancer. Finally, high CA20 is associated with poor prognosis and, by integrating drug sensitivity with drug perturbation profiles in cell lines, we identify candidate compounds for selectively targeting cancer cells exhibiting transcriptomic evidence for CA.Author summary: Centrosome amplification, i.e. an increased number of centrosomes—structures that exist inside cells, is a hallmark of cancer cells and therefore an Achilles' heel for the development of innovative therapies that specifically target tumour cells, sparing healthy ones. To exploit centrosome amplification’s clinical potential, it is crucial to understand its role in cancer development and to identify compounds for its selective targeting. These are challenging tasks due to the technical difficulty of profiling centrosome amplification in cells. In this study, we circumvent those challenges by computationally analysing the expression of 20 genes known to promote centrosome amplification across nearly 10,000 tumours of over 30 cancer types, thereby estimating their relative centrosome amplification levels. We found that those genes are indeed highly active in tumours and associated with prognosis in different cancer types. We also show that those genes’ expression is associated with instability in the structure of cancer cells’ chromosomes and identify candidate drugs for selectively targeting those cells. Our work therefore demonstrates the potential of computational analyses of large volumes of cancer molecular and clinical data to elucidate cellular and molecular mechanisms of tumour development and propose novel therapeutic options in oncology.

Suggested Citation

  • Bernardo P de Almeida & André F Vieira & Joana Paredes & Mónica Bettencourt-Dias & Nuno L Barbosa-Morais, 2019. "Pan-cancer association of a centrosome amplification gene expression signature with genomic alterations and clinical outcome," PLOS Computational Biology, Public Library of Science, vol. 15(3), pages 1-31, March.
  • Handle: RePEc:plo:pcbi00:1006832
    DOI: 10.1371/journal.pcbi.1006832
    as

    Download full text from publisher

    File URL: https://journals.plos.org/ploscompbiol/article?id=10.1371/journal.pcbi.1006832
    Download Restriction: no

    File URL: https://journals.plos.org/ploscompbiol/article/file?id=10.1371/journal.pcbi.1006832&type=printable
    Download Restriction: no

    File URL: https://libkey.io/10.1371/journal.pcbi.1006832?utm_source=ideas
    LibKey link: if access is restricted and if your library uses this service, LibKey will redirect you to where you can use your library subscription to access this item
    ---><---

    References listed on IDEAS

    as
    1. Kosuke Yoshihara & Maria Shahmoradgoli & Emmanuel Martínez & Rahulsimham Vegesna & Hoon Kim & Wandaliz Torres-Garcia & Victor Treviño & Hui Shen & Peter W. Laird & Douglas A. Levine & Scott L. Carter , 2013. "Inferring tumour purity and stromal and immune cell admixture from expression data," Nature Communications, Nature, vol. 4(1), pages 1-11, December.
    2. Neil J. Ganem & Susana A. Godinho & David Pellman, 2009. "A mechanism linking extra centrosomes to chromosomal instability," Nature, Nature, vol. 460(7252), pages 278-282, July.
    3. Munemasa Mori & Renin Hazan & Paul S. Danielian & John E. Mahoney & Huijun Li & Jining Lu & Emily S. Miller & Xueliang Zhu & Jacqueline A. Lees & Wellington V. Cardoso, 2017. "Cytoplasmic E2f4 forms organizing centres for initiation of centriole amplification during multiciliogenesis," Nature Communications, Nature, vol. 8(1), pages 1-11, August.
    4. Xiaoqun Wang & Jin-Wu Tsai & Janice H. Imai & Wei-Nan Lian & Richard B. Vallee & Song-Hai Shi, 2009. "Asymmetric centrosome inheritance maintains neural progenitors in the neocortex," Nature, Nature, vol. 461(7266), pages 947-955, October.
    5. Andriy Marusyk & Doris P. Tabassum & Philipp M. Altrock & Vanessa Almendro & Franziska Michor & Kornelia Polyak, 2014. "Non-cell-autonomous driving of tumour growth supports sub-clonal heterogeneity," Nature, Nature, vol. 514(7520), pages 54-58, October.
    6. Susana A. Godinho & Remigio Picone & Mithila Burute & Regina Dagher & Ying Su & Cheuk T. Leung & Kornelia Polyak & Joan S. Brugge & Manuel Théry & David Pellman, 2014. "Oncogene-like induction of cellular invasion from centrosome amplification," Nature, Nature, vol. 510(7503), pages 167-171, June.
    Full references (including those not matched with items on IDEAS)

    Citations

    Citations are extracted by the CitEc Project, subscribe to its RSS feed for this item.
    as


    Cited by:

    1. Guidantonio Malagoli Tagliazucchi & Anna J. Wiecek & Eloise Withnell & Maria Secrier, 2023. "Genomic and microenvironmental heterogeneity shaping epithelial-to-mesenchymal trajectories in cancer," Nature Communications, Nature, vol. 14(1), pages 1-20, December.

    Most related items

    These are the items that most often cite the same works as this one and are cited by the same works as this one.
    1. Carolin M. Sauer & James A. Hall & Dominique-Laurent Couturier & Thomas Bradley & Anna M. Piskorz & Jacob Griffiths & Ashley Sawle & Matthew D. Eldridge & Philip Smith & Karen Hosking & Marika A. V. R, 2023. "Molecular landscape and functional characterization of centrosome amplification in ovarian cancer," Nature Communications, Nature, vol. 14(1), pages 1-20, December.
    2. Zhongqi Fan & Xinchen Zou & Guangyi Wang & Yahui Liu & Yanfang Jiang & Haoyan Wang & Ping Zhang & Feng Wei & Xiaohong Du & Meng Wang & Xiaodong Sun & Bai Ji & Xintong Hu & Liguo Chen & Peiwen Zhou & D, 2024. "A transcriptome based molecular classification scheme for cholangiocarcinoma and subtype-derived prognostic biomarker," Nature Communications, Nature, vol. 15(1), pages 1-14, December.
    3. Dongliang Bian & Liangdong Sun & Junjie Hu & Liang Duan & Haoran Xia & Xinsheng Zhu & Fenghuan Sun & Lele Zhang & Huansha Yu & Yicheng Xiong & Zhida Huang & Deping Zhao & Nan Song & Jie Yang & Xiao Ba, 2023. "Neoadjuvant Afatinib for stage III EGFR-mutant non-small cell lung cancer: a phase II study," Nature Communications, Nature, vol. 14(1), pages 1-14, December.
    4. Shaoshuai Tang & Yunzhi Wang & Rongkui Luo & Rundong Fang & Yufeng Liu & Hang Xiang & Peng Ran & Yexin Tong & Mingjun Sun & Subei Tan & Wen Huang & Jie Huang & Jiacheng Lv & Ning Xu & Zhenmei Yao & Qi, 2024. "Proteomic characterization identifies clinically relevant subgroups of soft tissue sarcoma," Nature Communications, Nature, vol. 15(1), pages 1-24, December.
    5. Lavrentovich, Maxim O. & Nelson, David R., 2015. "Survival probabilities at spherical frontiers," Theoretical Population Biology, Elsevier, vol. 102(C), pages 26-39.
    6. Lucia Taraborrelli & Yasin Şenbabaoğlu & Lifen Wang & Junghyun Lim & Kerrigan Blake & Noelyn Kljavin & Sarah Gierke & Alexis Scherl & James Ziai & Erin McNamara & Mark Owyong & Shilpa Rao & Aslihan Ka, 2023. "Tumor-intrinsic expression of the autophagy gene Atg16l1 suppresses anti-tumor immunity in colorectal cancer," Nature Communications, Nature, vol. 14(1), pages 1-17, December.
    7. Jennifer G. Abelin & Erik J. Bergstrom & Keith D. Rivera & Hannah B. Taylor & Susan Klaeger & Charles Xu & Eva K. Verzani & C. Jackson White & Hilina B. Woldemichael & Maya Virshup & Meagan E. Olive &, 2023. "Workflow enabling deepscale immunopeptidome, proteome, ubiquitylome, phosphoproteome, and acetylome analyses of sample-limited tissues," Nature Communications, Nature, vol. 14(1), pages 1-22, December.
    8. Boshu Ouyang & Caihua Shan & Shun Shen & Xinnan Dai & Qingwang Chen & Xiaomin Su & Yongbin Cao & Xifeng Qin & Ying He & Siyu Wang & Ruizhe Xu & Ruining Hu & Leming Shi & Tun Lu & Wuli Yang & Shaojun P, 2024. "AI-powered omics-based drug pair discovery for pyroptosis therapy targeting triple-negative breast cancer," Nature Communications, Nature, vol. 15(1), pages 1-20, December.
    9. Wanzun Lin & Li Chen & Haojiong Zhang & Xianxin Qiu & Qingting Huang & Fangzhu Wan & Ziyu Le & Shikai Geng & Anlan Zhang & Sufang Qiu & Long Chen & Lin Kong & Jiade J. Lu, 2023. "Tumor-intrinsic YTHDF1 drives immune evasion and resistance to immune checkpoint inhibitors via promoting MHC-I degradation," Nature Communications, Nature, vol. 14(1), pages 1-22, December.
    10. Kang Wang & Ioannis Zerdes & Henrik J. Johansson & Dhifaf Sarhan & Yizhe Sun & Dimitris C. Kanellis & Emmanouil G. Sifakis & Artur Mezheyeuski & Xingrong Liu & Niklas Loman & Ingrid Hedenfalk & Jonas , 2024. "Longitudinal molecular profiling elucidates immunometabolism dynamics in breast cancer," Nature Communications, Nature, vol. 15(1), pages 1-24, December.
    11. Brian D. Lehmann & Antonio Colaprico & Tiago C. Silva & Jianjiao Chen & Hanbing An & Yuguang Ban & Hanchen Huang & Lily Wang & Jamaal L. James & Justin M. Balko & Paula I. Gonzalez-Ericsson & Melinda , 2021. "Multi-omics analysis identifies therapeutic vulnerabilities in triple-negative breast cancer subtypes," Nature Communications, Nature, vol. 12(1), pages 1-18, December.
    12. Zhenmei Yao & Ning Xu & Guoguo Shang & Haixing Wang & Hui Tao & Yunzhi Wang & Zhaoyu Qin & Subei Tan & Jinwen Feng & Jiajun Zhu & Fahan Ma & Sha Tian & Qiao Zhang & Yuanyuan Qu & Jun Hou & Jianming Gu, 2023. "Proteogenomics of different urothelial bladder cancer stages reveals distinct molecular features for papillary cancer and carcinoma in situ," Nature Communications, Nature, vol. 14(1), pages 1-25, December.
    13. Chunyang Bao & Richard W. Tourdot & Gregory J. Brunette & Chip Stewart & Lili Sun & Hideo Baba & Masayuki Watanabe & Agoston T. Agoston & Kunal Jajoo & Jon M. Davison & Katie S. Nason & Gad Getz & Ken, 2023. "Genomic signatures of past and present chromosomal instability in Barrett’s esophagus and early esophageal adenocarcinoma," Nature Communications, Nature, vol. 14(1), pages 1-22, December.
    14. Guidantonio Malagoli Tagliazucchi & Anna J. Wiecek & Eloise Withnell & Maria Secrier, 2023. "Genomic and microenvironmental heterogeneity shaping epithelial-to-mesenchymal trajectories in cancer," Nature Communications, Nature, vol. 14(1), pages 1-20, December.
    15. Bruna Calsina & Elena Piñeiro-Yáñez & Ángel M. Martínez-Montes & Eduardo Caleiras & Ángel Fernández-Sanromán & María Monteagudo & Rafael Torres-Pérez & Coral Fustero-Torre & Marta Pulgarín-Alfaro & Ed, 2023. "Genomic and immune landscape Of metastatic pheochromocytoma and paraganglioma," Nature Communications, Nature, vol. 14(1), pages 1-20, December.
    16. Shen Zhao & De-Pin Chen & Tong Fu & Jing-Cheng Yang & Ding Ma & Xiu-Zhi Zhu & Xiang-Xue Wang & Yi-Ping Jiao & Xi Jin & Yi Xiao & Wen-Xuan Xiao & Hu-Yunlong Zhang & Hong Lv & Anant Madabhushi & Wen-Tao, 2023. "Single-cell morphological and topological atlas reveals the ecosystem diversity of human breast cancer," Nature Communications, Nature, vol. 14(1), pages 1-22, December.
    17. Xiaodong Liu & Ke Zhang & Neslihan A. Kaya & Zhe Jia & Dafei Wu & Tingting Chen & Zhiyuan Liu & Sinan Zhu & Axel M. Hillmer & Torsten Wuestefeld & Jin Liu & Yun Shen Chan & Zheng Hu & Liang Ma & Li Ji, 2024. "Tumor phylogeography reveals block-shaped spatial heterogeneity and the mode of evolution in Hepatocellular Carcinoma," Nature Communications, Nature, vol. 15(1), pages 1-14, December.
    18. Revati Darp & Marc A. Vittoria & Neil J. Ganem & Craig J. Ceol, 2022. "Oncogenic BRAF induces whole-genome doubling through suppression of cytokinesis," Nature Communications, Nature, vol. 13(1), pages 1-17, December.
    19. Zheqi Li & Olivia McGinn & Yang Wu & Amir Bahreini & Nolan M. Priedigkeit & Kai Ding & Sayali Onkar & Caleb Lampenfeld & Carol A. Sartorius & Lori Miller & Margaret Rosenzweig & Ofir Cohen & Nikhil Wa, 2022. "ESR1 mutant breast cancers show elevated basal cytokeratins and immune activation," Nature Communications, Nature, vol. 13(1), pages 1-18, December.
    20. Yuanyuan Qu & Xiaohui Wu & Aihetaimujiang Anwaier & Jinwen Feng & Wenhao Xu & Xiaoru Pei & Yu Zhu & Yang Liu & Lin Bai & Guojian Yang & Xi Tian & Jiaqi Su & Guo-Hai Shi & Da-Long Cao & Fujiang Xu & Yu, 2022. "Proteogenomic characterization of MiT family translocation renal cell carcinoma," Nature Communications, Nature, vol. 13(1), pages 1-18, December.

    More about this item

    Statistics

    Access and download statistics

    Corrections

    All material on this site has been provided by the respective publishers and authors. You can help correct errors and omissions. When requesting a correction, please mention this item's handle: RePEc:plo:pcbi00:1006832. See general information about how to correct material in RePEc.

    If you have authored this item and are not yet registered with RePEc, we encourage you to do it here. This allows to link your profile to this item. It also allows you to accept potential citations to this item that we are uncertain about.

    If CitEc recognized a bibliographic reference but did not link an item in RePEc to it, you can help with this form .

    If you know of missing items citing this one, you can help us creating those links by adding the relevant references in the same way as above, for each refering item. If you are a registered author of this item, you may also want to check the "citations" tab in your RePEc Author Service profile, as there may be some citations waiting for confirmation.

    For technical questions regarding this item, or to correct its authors, title, abstract, bibliographic or download information, contact: ploscompbiol (email available below). General contact details of provider: https://journals.plos.org/ploscompbiol/ .

    Please note that corrections may take a couple of weeks to filter through the various RePEc services.

    IDEAS is a RePEc service. RePEc uses bibliographic data supplied by the respective publishers.