IDEAS home Printed from https://ideas.repec.org/a/plo/pcbi00/1006792.html
   My bibliography  Save this article

IRIS-EDA: An integrated RNA-Seq interpretation system for gene expression data analysis

Author

Listed:
  • Brandon Monier
  • Adam McDermaid
  • Cankun Wang
  • Jing Zhao
  • Allison Miller
  • Anne Fennell
  • Qin Ma

Abstract

Next-Generation Sequencing has made available substantial amounts of large-scale Omics data, providing unprecedented opportunities to understand complex biological systems. Specifically, the value of RNA-Sequencing (RNA-Seq) data has been confirmed in inferring how gene regulatory systems will respond under various conditions (bulk data) or cell types (single-cell data). RNA-Seq can generate genome-scale gene expression profiles that can be further analyzed using correlation analysis, co-expression analysis, clustering, differential gene expression (DGE), among many other studies. While these analyses can provide invaluable information related to gene expression, integration and interpretation of the results can prove challenging. Here we present a tool called IRIS-EDA, which is a Shiny web server for expression data analysis. It provides a straightforward and user-friendly platform for performing numerous computational analyses on user-provided RNA-Seq or Single-cell RNA-Seq (scRNA-Seq) data. Specifically, three commonly used R packages (edgeR, DESeq2, and limma) are implemented in the DGE analysis with seven unique experimental design functionalities, including a user-specified design matrix option. Seven discovery-driven methods and tools (correlation analysis, heatmap, clustering, biclustering, Principal Component Analysis (PCA), Multidimensional Scaling (MDS), and t-distributed Stochastic Neighbor Embedding (t-SNE)) are provided for gene expression exploration which is useful for designing experimental hypotheses and determining key factors for comprehensive DGE analysis. Furthermore, this platform integrates seven visualization tools in a highly interactive manner, for improved interpretation of the analyses. It is noteworthy that, for the first time, IRIS-EDA provides a framework to expedite submission of data and results to NCBI’s Gene Expression Omnibus following the FAIR (Findable, Accessible, Interoperable and Reusable) Data Principles. IRIS-EDA is freely available at http://bmbl.sdstate.edu/IRIS/.

Suggested Citation

  • Brandon Monier & Adam McDermaid & Cankun Wang & Jing Zhao & Allison Miller & Anne Fennell & Qin Ma, 2019. "IRIS-EDA: An integrated RNA-Seq interpretation system for gene expression data analysis," PLOS Computational Biology, Public Library of Science, vol. 15(2), pages 1-15, February.
  • Handle: RePEc:plo:pcbi00:1006792
    DOI: 10.1371/journal.pcbi.1006792
    as

    Download full text from publisher

    File URL: https://journals.plos.org/ploscompbiol/article?id=10.1371/journal.pcbi.1006792
    Download Restriction: no

    File URL: https://journals.plos.org/ploscompbiol/article/file?id=10.1371/journal.pcbi.1006792&type=printable
    Download Restriction: no

    File URL: https://libkey.io/10.1371/journal.pcbi.1006792?utm_source=ideas
    LibKey link: if access is restricted and if your library uses this service, LibKey will redirect you to where you can use your library subscription to access this item
    ---><---

    References listed on IDEAS

    as
    1. Nicholas Navin & Jude Kendall & Jennifer Troge & Peter Andrews & Linda Rodgers & Jeanne McIndoo & Kerry Cook & Asya Stepansky & Dan Levy & Diane Esposito & Lakshmi Muthuswamy & Alex Krasnitz & W. Rich, 2011. "Tumour evolution inferred by single-cell sequencing," Nature, Nature, vol. 472(7341), pages 90-94, April.
    2. Sayed Mohammad Ebrahim Sahraeian & Marghoob Mohiyuddin & Robert Sebra & Hagen Tilgner & Pegah T. Afshar & Kin Fai Au & Narges Bani Asadi & Mark B. Gerstein & Wing Hung Wong & Michael P. Snyder & Eric , 2017. "Gaining comprehensive biological insight into the transcriptome by performing a broad-spectrum RNA-seq analysis," Nature Communications, Nature, vol. 8(1), pages 1-15, December.
    3. Jeffrey M. Perkel, 2018. "Data visualization tools drive interactivity and reproducibility in online publishing," Nature, Nature, vol. 554(7690), pages 133-134, February.
    4. J. Kruskal, 1964. "Multidimensional scaling by optimizing goodness of fit to a nonmetric hypothesis," Psychometrika, Springer;The Psychometric Society, vol. 29(1), pages 1-27, March.
    5. Wouter Saelens & Robrecht Cannoodt & Yvan Saeys, 2018. "A comprehensive evaluation of module detection methods for gene expression data," Nature Communications, Nature, vol. 9(1), pages 1-12, December.
    Full references (including those not matched with items on IDEAS)

    Most related items

    These are the items that most often cite the same works as this one and are cited by the same works as this one.
    1. Roger Shepard, 1974. "Representation of structure in similarity data: Problems and prospects," Psychometrika, Springer;The Psychometric Society, vol. 39(4), pages 373-421, December.
    2. Giovanna Boccuzzo & Licia Maron, 2017. "Proposal of a composite indicator of job quality based on a measure of weighted distances," Quality & Quantity: International Journal of Methodology, Springer, vol. 51(5), pages 2357-2374, September.
    3. Xinrui Zhou & Wan Yi Seow & Norbert Ha & Teh How Cheng & Lingfan Jiang & Jeeranan Boonruangkan & Jolene Jie Lin Goh & Shyam Prabhakar & Nigel Chou & Kok Hao Chen, 2024. "Highly sensitive spatial transcriptomics using FISHnCHIPs of multiple co-expressed genes," Nature Communications, Nature, vol. 15(1), pages 1-14, December.
    4. Jong-Seok Lee & Dan Zhu, 2012. "Shilling Attack Detection---A New Approach for a Trustworthy Recommender System," INFORMS Journal on Computing, INFORMS, vol. 24(1), pages 117-131, February.
    5. Ján Kulfan & Lenka Sarvašová & Michal Parák & Marek Dzurenko & Peter Zach, 2018. "Can late flushing trees avoid attack by moth larvae in temperate forests?," Plant Protection Science, Czech Academy of Agricultural Sciences, vol. 54(4), pages 272-283.
    6. Ma, Jie & Tse, Ying Kei & Wang, Xiaojun & Zhang, Minhao, 2019. "Examining customer perception and behaviour through social media research – An empirical study of the United Airlines overbooking crisis," Transportation Research Part E: Logistics and Transportation Review, Elsevier, vol. 127(C), pages 192-205.
    7. Muñoz-Mas, Rafael & Vezza, Paolo & Alcaraz-Hernández, Juan Diego & Martínez-Capel, Francisco, 2016. "Risk of invasion predicted with support vector machines: A case study on northern pike (Esox Lucius, L.) and bleak (Alburnus alburnus, L.)," Ecological Modelling, Elsevier, vol. 342(C), pages 123-134.
    8. Ivan Mihál & Eva Luptáková & Martin Pavlík, 2021. "Wood-inhabiting macromycete communities in spruce stands on former agricultural land," Journal of Forest Science, Czech Academy of Agricultural Sciences, vol. 67(2), pages 51-65.
    9. Venera Tomaselli, 1996. "Multivariate statistical techniques and sociological research," Quality & Quantity: International Journal of Methodology, Springer, vol. 30(3), pages 253-276, August.
    10. Simensen, Trond & Halvorsen, Rune & Erikstad, Lars, 2018. "Methods for landscape characterisation and mapping: A systematic review," Land Use Policy, Elsevier, vol. 75(C), pages 557-569.
    11. Marie Diekmann & Ludwig Theuvsen, 2019. "Value structures determining community supported agriculture: insights from Germany," Agriculture and Human Values, Springer;The Agriculture, Food, & Human Values Society (AFHVS), vol. 36(4), pages 733-746, December.
    12. Bijmolt, T.H.A. & Wedel, M., 1996. "A Monte Carlo Evaluation of Maximum Likelihood Multidimensional Scaling Methods," Other publications TiSEM f72cc9d8-f370-43aa-a224-4, Tilburg University, School of Economics and Management.
    13. Jarmila Horváthová & Martina Mokrišová & Mária Vrábliková, 2021. "Benchmarking—A Way of Finding Risk Factors in Business Performance," JRFM, MDPI, vol. 14(5), pages 1-17, May.
    14. Shiau, Wen-Lung & Dwivedi, Yogesh K. & Yang, Han Suan, 2017. "Co-citation and cluster analyses of extant literature on social networks," International Journal of Information Management, Elsevier, vol. 37(5), pages 390-399.
    15. Roderick McDonald, 1976. "A note on monotone polygons fitted to bivariate data," Psychometrika, Springer;The Psychometric Society, vol. 41(4), pages 543-546, December.
    16. D. V. Pahan Prasada, 2013. "Domestic versus Multilateral Institutions in Bilateral Trade: A Comparative Gravity Analysis," International Economic Journal, Taylor & Francis Journals, vol. 27(1), pages 127-142, March.
    17. Phipps Arabie & J. Carroll, 1980. "Mapclus: A mathematical programming approach to fitting the adclus model," Psychometrika, Springer;The Psychometric Society, vol. 45(2), pages 211-235, June.
    18. Mark Davison, 1976. "Fitting and testing carroll's weighted unfolding model for preferences," Psychometrika, Springer;The Psychometric Society, vol. 41(2), pages 233-247, June.
    19. Malcolm Dow & Peter Willett & Roderick McDonald & Belver Griffith & Michael Greenacre & Peter Bryant & Daniel Wartenberg & Ove Frank, 1987. "Book reviews," Journal of Classification, Springer;The Classification Society, vol. 4(2), pages 245-278, September.
    20. Dionisios Koutsantonis & Konstantinos Koutsantonis & Nikolaos P. Bakas & Vagelis Plevris & Andreas Langousis & Savvas A. Chatzichristofis, 2022. "Bibliometric Literature Review of Adaptive Learning Systems," Sustainability, MDPI, vol. 14(19), pages 1-18, October.

    More about this item

    Statistics

    Access and download statistics

    Corrections

    All material on this site has been provided by the respective publishers and authors. You can help correct errors and omissions. When requesting a correction, please mention this item's handle: RePEc:plo:pcbi00:1006792. See general information about how to correct material in RePEc.

    If you have authored this item and are not yet registered with RePEc, we encourage you to do it here. This allows to link your profile to this item. It also allows you to accept potential citations to this item that we are uncertain about.

    If CitEc recognized a bibliographic reference but did not link an item in RePEc to it, you can help with this form .

    If you know of missing items citing this one, you can help us creating those links by adding the relevant references in the same way as above, for each refering item. If you are a registered author of this item, you may also want to check the "citations" tab in your RePEc Author Service profile, as there may be some citations waiting for confirmation.

    For technical questions regarding this item, or to correct its authors, title, abstract, bibliographic or download information, contact: ploscompbiol (email available below). General contact details of provider: https://journals.plos.org/ploscompbiol/ .

    Please note that corrections may take a couple of weeks to filter through the various RePEc services.

    IDEAS is a RePEc service. RePEc uses bibliographic data supplied by the respective publishers.