IDEAS home Printed from https://ideas.repec.org/a/plo/pcbi00/1006757.html
   My bibliography  Save this article

Tuft dendrites of pyramidal neurons operate as feedback-modulated functional subunits

Author

Listed:
  • Florian Eberhardt
  • Andreas V M Herz
  • Stefan Häusler

Abstract

Dendrites of pyramidal cells exhibit complex morphologies and contain a variety of ionic conductances, which generate non-trivial integrative properties. Basal and proximal apical dendrites have been shown to function as independent computational subunits within a two-layer feedforward processing scheme. The outputs of the subunits are linearly summed and passed through a final non-linearity. It is an open question whether this mathematical abstraction can be applied to apical tuft dendrites as well. Using a detailed compartmental model of CA1 pyramidal neurons and a novel theoretical framework based on iso-response methods, we first show that somatic sub-threshold responses to brief synaptic inputs cannot be described by a two-layer feedforward model. Then, we relax the core assumption of subunit independence and introduce non-linear feedback from the output layer to the subunit inputs. We find that additive feedback alone explains the somatic responses to synaptic inputs to most of the branches in the apical tuft. Individual dendritic branches bidirectionally modulate the thresholds of their input-output curves without significantly changing the gains. In contrast to these findings for precisely timed inputs, we show that neuronal computations based on firing rates can be accurately described by purely feedforward two-layer models. Our findings support the view that dendrites of pyramidal neurons possess non-linear analog processing capabilities that critically depend on the location of synaptic inputs. The iso-response framework proposed in this computational study is highly efficient and could be directly applied to biological neurons.Author summary: Pyramidal neurons are the principal cell type in the cerebral cortex. Revealing how these cells operate is key to understanding the dynamics and computations of cortical circuits. However, it is still a matter of debate how pyramidal neurons transform their synaptic inputs into spike outputs. Recent studies have proposed that individual dendritic branches or subtrees may function as independent computational subunits. Although experimental work consolidated this abstraction for basal and proximal apical dendrites, a rigorous test for tuft dendrites is still missing. By carrying out a computational study we demonstrate that dendritic branches in the tuft do not form independent subunits, however, their integrative properties can be captured by a model that incorporates modulatory feedback between these subunits. This conclusion has been reached using a novel theoretical framework that can be directly integrated into multi-electrode or photo-stimulation paradigms to reveal the dendritic computations of biological neurons.

Suggested Citation

  • Florian Eberhardt & Andreas V M Herz & Stefan Häusler, 2019. "Tuft dendrites of pyramidal neurons operate as feedback-modulated functional subunits," PLOS Computational Biology, Public Library of Science, vol. 15(3), pages 1-23, March.
  • Handle: RePEc:plo:pcbi00:1006757
    DOI: 10.1371/journal.pcbi.1006757
    as

    Download full text from publisher

    File URL: https://journals.plos.org/ploscompbiol/article?id=10.1371/journal.pcbi.1006757
    Download Restriction: no

    File URL: https://journals.plos.org/ploscompbiol/article/file?id=10.1371/journal.pcbi.1006757&type=printable
    Download Restriction: no

    File URL: https://libkey.io/10.1371/journal.pcbi.1006757?utm_source=ideas
    LibKey link: if access is restricted and if your library uses this service, LibKey will redirect you to where you can use your library subscription to access this item
    ---><---

    References listed on IDEAS

    as
    1. M. R. Mehta & A. K. Lee & M. A. Wilson, 2002. "Role of experience and oscillations in transforming a rate code into a temporal code," Nature, Nature, vol. 417(6890), pages 741-746, June.
    2. Matthew E. Larkum & J. Julius Zhu & Bert Sakmann, 1999. "A new cellular mechanism for coupling inputs arriving at different cortical layers," Nature, Nature, vol. 398(6725), pages 338-341, March.
    3. Zachary F. Mainen & Roberto Malinow & Karel Svoboda, 1999. "Synaptic calcium transients in single spines indicate that NMDA receptors are not saturated," Nature, Nature, vol. 399(6732), pages 151-155, May.
    4. Gabriela Popescu & Antoine Robert & James R. Howe & Anthony Auerbach, 2004. "Reaction mechanism determines NMDA receptor response to repetitive stimulation," Nature, Nature, vol. 430(7001), pages 790-793, August.
    Full references (including those not matched with items on IDEAS)

    Most related items

    These are the items that most often cite the same works as this one and are cited by the same works as this one.
    1. David M Santucci & Sridhar Raghavachari, 2008. "The Effects of NR2 Subunit-Dependent NMDA Receptor Kinetics on Synaptic Transmission and CaMKII Activation," PLOS Computational Biology, Public Library of Science, vol. 4(10), pages 1-16, October.
    2. Matteo Farinella & Daniel T Ruedt & Padraig Gleeson & Frederic Lanore & R Angus Silver, 2014. "Glutamate-Bound NMDARs Arising from In Vivo-like Network Activity Extend Spatio-temporal Integration in a L5 Cortical Pyramidal Cell Model," PLOS Computational Biology, Public Library of Science, vol. 10(4), pages 1-21, April.
    3. Jan C. Frankowski & Alexa Tierno & Shreya Pavani & Quincy Cao & David C. Lyon & Robert F. Hunt, 2022. "Brain-wide reconstruction of inhibitory circuits after traumatic brain injury," Nature Communications, Nature, vol. 13(1), pages 1-16, December.
    4. Guizhen Fan & Mariah R. Baker & Lara E. Terry & Vikas Arige & Muyuan Chen & Alexander B. Seryshev & Matthew L. Baker & Steven J. Ludtke & David I. Yule & Irina I. Serysheva, 2022. "Conformational motions and ligand-binding underlying gating and regulation in IP3R channel," Nature Communications, Nature, vol. 13(1), pages 1-15, December.
    5. Oren Amsalem & Hidehiko Inagaki & Jianing Yu & Karel Svoboda & Ran Darshan, 2024. "Sub-threshold neuronal activity and the dynamical regime of cerebral cortex," Nature Communications, Nature, vol. 15(1), pages 1-17, December.
    6. Arjun A. Bhaskaran & Théo Gauvrit & Yukti Vyas & Guillaume Bony & Melanie Ginger & Andreas Frick, 2023. "Endogenous noise of neocortical neurons correlates with atypical sensory response variability in the Fmr1−/y mouse model of autism," Nature Communications, Nature, vol. 14(1), pages 1-16, December.
    7. Giuseppe Chindemi & Marwan Abdellah & Oren Amsalem & Ruth Benavides-Piccione & Vincent Delattre & Michael Doron & András Ecker & Aurélien T. Jaquier & James King & Pramod Kumbhar & Caitlin Monney & Ro, 2022. "A calcium-based plasticity model for predicting long-term potentiation and depression in the neocortex," Nature Communications, Nature, vol. 13(1), pages 1-19, December.
    8. Dhanya Parameshwaran & Upinder S Bhalla, 2013. "Theta Frequency Background Tunes Transmission but Not Summation of Spiking Responses," PLOS ONE, Public Library of Science, vol. 8(1), pages 1-12, January.
    9. Praveen K Pilly & Stephen Grossberg, 2013. "Spiking Neurons in a Hierarchical Self-Organizing Map Model Can Learn to Develop Spatial and Temporal Properties of Entorhinal Grid Cells and Hippocampal Place Cells," PLOS ONE, Public Library of Science, vol. 8(4), pages 1-22, April.
    10. Zhenrui Liao & Kevin C. Gonzalez & Deborah M. Li & Catalina M. Yang & Donald Holder & Natalie E. McClain & Guofeng Zhang & Stephen W. Evans & Mariya Chavarha & Jane Simko & Christopher D. Makinson & M, 2024. "Functional architecture of intracellular oscillations in hippocampal dendrites," Nature Communications, Nature, vol. 15(1), pages 1-16, December.
    11. Pojeong Park & J. David Wong-Campos & Daniel G. Itkis & Byung Hun Lee & Yitong Qi & Hunter C. Davis & Benjamin Antin & Amol Pasarkar & Jonathan B. Grimm & Sarah E. Plutkis & Katie L. Holland & Liam Pa, 2025. "Dendritic excitations govern back-propagation via a spike-rate accelerometer," Nature Communications, Nature, vol. 16(1), pages 1-20, December.
    12. Krishna Choudhary & Sven Berberich & Thomas T. G. Hahn & James M. McFarland & Mayank R. Mehta, 2024. "Spontaneous persistent activity and inactivity in vivo reveals differential cortico-entorhinal functional connectivity," Nature Communications, Nature, vol. 15(1), pages 1-15, December.
    13. Louis Kang & Taro Toyoizumi, 2024. "Distinguishing examples while building concepts in hippocampal and artificial networks," Nature Communications, Nature, vol. 15(1), pages 1-19, December.
    14. Céline D. Dürst & J. Simon Wiegert & Christian Schulze & Nordine Helassa & Katalin Török & Thomas G. Oertner, 2022. "Vesicular release probability sets the strength of individual Schaffer collateral synapses," Nature Communications, Nature, vol. 13(1), pages 1-13, December.
    15. Xiaojun Zhou & Genxin Wang & Chenhui Tian & Lin Du & Edward V. Prochownik & Youjun Li, 2024. "Inhibition of DUSP18 impairs cholesterol biosynthesis and promotes anti-tumor immunity in colorectal cancer," Nature Communications, Nature, vol. 15(1), pages 1-19, December.
    16. Li, Tianyu & Wu, Yong & Yang, Lijian & Fu, Ziying & Jia, Ya, 2023. "Neuronal morphology and network properties modulate signal propagation in multi-layer feedforward network," Chaos, Solitons & Fractals, Elsevier, vol. 172(C).
    17. Sara Mahallati & James C Bezdek & Milos R Popovic & Taufik A Valiante, 2019. "Cluster tendency assessment in neuronal spike data," PLOS ONE, Public Library of Science, vol. 14(11), pages 1-29, November.
    18. Shan Shen & Xiaolong Jiang & Federico Scala & Jiakun Fu & Paul Fahey & Dmitry Kobak & Zhenghuan Tan & Na Zhou & Jacob Reimer & Fabian Sinz & Andreas S. Tolias, 2022. "Distinct organization of two cortico-cortical feedback pathways," Nature Communications, Nature, vol. 13(1), pages 1-14, December.
    19. Eric Reifenstein & Martin Stemmler & Andreas V M Herz & Richard Kempter & Susanne Schreiber, 2014. "Movement Dependence and Layer Specificity of Entorhinal Phase Precession in Two-Dimensional Environments," PLOS ONE, Public Library of Science, vol. 9(6), pages 1-11, June.
    20. Hojeong Kim & Kelvin E Jones, 2012. "The Retrograde Frequency Response of Passive Dendritic Trees Constrains the Nonlinear Firing Behaviour of a Reduced Neuron Model," PLOS ONE, Public Library of Science, vol. 7(8), pages 1-15, August.

    More about this item

    Statistics

    Access and download statistics

    Corrections

    All material on this site has been provided by the respective publishers and authors. You can help correct errors and omissions. When requesting a correction, please mention this item's handle: RePEc:plo:pcbi00:1006757. See general information about how to correct material in RePEc.

    If you have authored this item and are not yet registered with RePEc, we encourage you to do it here. This allows to link your profile to this item. It also allows you to accept potential citations to this item that we are uncertain about.

    If CitEc recognized a bibliographic reference but did not link an item in RePEc to it, you can help with this form .

    If you know of missing items citing this one, you can help us creating those links by adding the relevant references in the same way as above, for each refering item. If you are a registered author of this item, you may also want to check the "citations" tab in your RePEc Author Service profile, as there may be some citations waiting for confirmation.

    For technical questions regarding this item, or to correct its authors, title, abstract, bibliographic or download information, contact: ploscompbiol (email available below). General contact details of provider: https://journals.plos.org/ploscompbiol/ .

    Please note that corrections may take a couple of weeks to filter through the various RePEc services.

    IDEAS is a RePEc service. RePEc uses bibliographic data supplied by the respective publishers.