IDEAS home Printed from https://ideas.repec.org/a/plo/pcbi00/1006501.html
   My bibliography  Save this article

Conventional analysis of trial-by-trial adaptation is biased: Empirical and theoretical support using a Bayesian estimator

Author

Listed:
  • Daniel Blustein
  • Ahmed Shehata
  • Kevin Englehart
  • Jonathon Sensinger

Abstract

Research on human motor adaptation has often focused on how people adapt to self-generated or externally-influenced errors. Trial-by-trial adaptation is a person’s response to self-generated errors. Externally-influenced errors applied as catch-trial perturbations are used to calculate a person’s perturbation adaptation rate. Although these adaptation rates are sometimes compared to one another, we show through simulation and empirical data that the two metrics are distinct. We demonstrate that the trial-by-trial adaptation rate, often calculated as a coefficient in a linear regression, is biased under typical conditions. We tested 12 able-bodied subjects moving a cursor on a screen using a computer mouse. Statistically different adaptation rates arise when sub-sets of trials from different phases of learning are analyzed from within a sequence of movement results. We propose a new approach to identify when a person’s learning has stabilized in order to identify steady-state movement trials from which to calculate a more reliable trial-by-trial adaptation rate. Using a Bayesian model of human movement, we show that this analysis approach is more consistent and provides a more confident estimate than alternative approaches. Constraining analyses to steady-state conditions will allow researchers to better decouple the multiple concurrent learning processes that occur while a person makes goal-directed movements. Streamlining this analysis may help broaden the impact of motor adaptation studies, perhaps even enhancing their clinical usefulness.Author summary: By observing the learning rate of a person making a movement under new conditions, researchers can better understand how the nervous system handles uncertainty. Patients suffering from motor deficits or using prostheses will often display different motor abilities that can be observed as changes in error correction rates. Here we show that previous approaches to determining error correction rates are affected by the overall learning rate within the subset of trials selected for analysis. We use real-world data collected from people controlling a computer cursor and simulations of how a person’s nervous system operates to show the limitations of current approaches. We also present a new approach to limit some of the biases with current motor analysis techniques.

Suggested Citation

  • Daniel Blustein & Ahmed Shehata & Kevin Englehart & Jonathon Sensinger, 2018. "Conventional analysis of trial-by-trial adaptation is biased: Empirical and theoretical support using a Bayesian estimator," PLOS Computational Biology, Public Library of Science, vol. 14(12), pages 1-15, December.
  • Handle: RePEc:plo:pcbi00:1006501
    DOI: 10.1371/journal.pcbi.1006501
    as

    Download full text from publisher

    File URL: https://journals.plos.org/ploscompbiol/article?id=10.1371/journal.pcbi.1006501
    Download Restriction: no

    File URL: https://journals.plos.org/ploscompbiol/article/file?id=10.1371/journal.pcbi.1006501&type=printable
    Download Restriction: no

    File URL: https://libkey.io/10.1371/journal.pcbi.1006501?utm_source=ideas
    LibKey link: if access is restricted and if your library uses this service, LibKey will redirect you to where you can use your library subscription to access this item
    ---><---

    References listed on IDEAS

    as
    1. Robert J van Beers & Yor van der Meer & Richard M Veerman, 2013. "What Autocorrelation Tells Us about Motor Variability: Insights from Dart Throwing," PLOS ONE, Public Library of Science, vol. 8(5), pages 1-8, May.
    2. Robert J van Beers, 2012. "How Does Our Motor System Determine Its Learning Rate?," PLOS ONE, Public Library of Science, vol. 7(11), pages 1-17, November.
    3. Reva E Johnson & Konrad P Kording & Levi J Hargrove & Jonathon W Sensinger, 2017. "Adaptation to random and systematic errors: Comparison of amputee and non-amputee control interfaces with varying levels of process noise," PLOS ONE, Public Library of Science, vol. 12(3), pages 1-19, March.
    4. Kang He & You Liang & Farnaz Abdollahi & Moria Fisher Bittmann & Konrad Kording & Kunlin Wei, 2016. "The Statistical Determinants of the Speed of Motor Learning," PLOS Computational Biology, Public Library of Science, vol. 12(9), pages 1-20, September.
    5. Kurt A. Thoroughman & Reza Shadmehr, 2000. "Learning of action through adaptive combination of motor primitives," Nature, Nature, vol. 407(6805), pages 742-747, October.
    6. Konrad P. Körding & Daniel M. Wolpert, 2004. "Bayesian integration in sensorimotor learning," Nature, Nature, vol. 427(6971), pages 244-247, January.
    Full references (including those not matched with items on IDEAS)

    Most related items

    These are the items that most often cite the same works as this one and are cited by the same works as this one.
    1. Joshua G A Cashaback & Christopher K Lao & Dimitrios J Palidis & Susan K Coltman & Heather R McGregor & Paul L Gribble, 2019. "The gradient of the reinforcement landscape influences sensorimotor learning," PLOS Computational Biology, Public Library of Science, vol. 15(3), pages 1-27, March.
    2. Frédéric Crevecoeur & Stephen H Scott, 2013. "Priors Engaged in Long-Latency Responses to Mechanical Perturbations Suggest a Rapid Update in State Estimation," PLOS Computational Biology, Public Library of Science, vol. 9(8), pages 1-14, August.
    3. Luis Nicolas Gonzalez Castro & Craig Bryant Monsen & Maurice A Smith, 2011. "The Binding of Learning to Action in Motor Adaptation," PLOS Computational Biology, Public Library of Science, vol. 7(6), pages 1-14, June.
    4. Shih-Wei Wu & Maria F Dal Martello & Laurence T Maloney, 2009. "Sub-Optimal Allocation of Time in Sequential Movements," PLOS ONE, Public Library of Science, vol. 4(12), pages 1-13, December.
    5. Vinil T Chackochan & Vittorio Sanguineti, 2019. "Incomplete information about the partner affects the development of collaborative strategies in joint action," PLOS Computational Biology, Public Library of Science, vol. 15(12), pages 1-23, December.
    6. Leopold Zizlsperger & Thomas Sauvigny & Thomas Haarmeier, 2012. "Selective Attention Increases Choice Certainty in Human Decision Making," PLOS ONE, Public Library of Science, vol. 7(7), pages 1-9, July.
    7. Geonhui Lee & Woong Choi & Hanjin Jo & Wookhyun Park & Jaehyo Kim, 2020. "Analysis of motor control strategy for frontal and sagittal planes of circular tracking movements using visual feedback noise from velocity change and depth information," PLOS ONE, Public Library of Science, vol. 15(11), pages 1-22, November.
    8. Ian S Howard & David W Franklin, 2015. "Neural Tuning Functions Underlie Both Generalization and Interference," PLOS ONE, Public Library of Science, vol. 10(6), pages 1-21, June.
    9. Wen-Hao Zhang & Si Wu & Krešimir Josić & Brent Doiron, 2023. "Sampling-based Bayesian inference in recurrent circuits of stochastic spiking neurons," Nature Communications, Nature, vol. 14(1), pages 1-19, December.
    10. Adam N Sanborn & Ulrik R Beierholm, 2016. "Fast and Accurate Learning When Making Discrete Numerical Estimates," PLOS Computational Biology, Public Library of Science, vol. 12(4), pages 1-28, April.
    11. Seth W. Egger & Stephen G. Lisberger, 2022. "Neural structure of a sensory decoder for motor control," Nature Communications, Nature, vol. 13(1), pages 1-13, December.
    12. Tim Genewein & Eduard Hez & Zeynab Razzaghpanah & Daniel A Braun, 2015. "Structure Learning in Bayesian Sensorimotor Integration," PLOS Computational Biology, Public Library of Science, vol. 11(8), pages 1-27, August.
    13. Ofri Raviv & Merav Ahissar & Yonatan Loewenstein, 2012. "How Recent History Affects Perception: The Normative Approach and Its Heuristic Approximation," PLOS Computational Biology, Public Library of Science, vol. 8(10), pages 1-10, October.
    14. Brocas, Isabelle & Carrillo, Juan D., 2012. "From perception to action: An economic model of brain processes," Games and Economic Behavior, Elsevier, vol. 75(1), pages 81-103.
    15. Max Berniker & Martin Voss & Konrad Kording, 2010. "Learning Priors for Bayesian Computations in the Nervous System," PLOS ONE, Public Library of Science, vol. 5(9), pages 1-9, September.
    16. Carrillo, Juan & Brocas, Isabelle, 2007. "Reason, Emotion and Information Processing in the Brain," CEPR Discussion Papers 6535, C.E.P.R. Discussion Papers.
    17. Jannes Jegminat & Maya A Jastrzębowska & Matthew V Pachai & Michael H Herzog & Jean-Pascal Pfister, 2020. "Bayesian regression explains how human participants handle parameter uncertainty," PLOS Computational Biology, Public Library of Science, vol. 16(5), pages 1-23, May.
    18. Luigi Acerbi & Sethu Vijayakumar & Daniel M Wolpert, 2014. "On the Origins of Suboptimality in Human Probabilistic Inference," PLOS Computational Biology, Public Library of Science, vol. 10(6), pages 1-23, June.
    19. Alice Soldà & Changxia Ke & Lionel Page & William von Hippel, 2020. "Strategically delusional," Experimental Economics, Springer;Economic Science Association, vol. 23(3), pages 604-631, September.
    20. Vassilios N Christopoulos & Paul R Schrater, 2009. "Grasping Objects with Environmentally Induced Position Uncertainty," PLOS Computational Biology, Public Library of Science, vol. 5(10), pages 1-11, October.

    More about this item

    Statistics

    Access and download statistics

    Corrections

    All material on this site has been provided by the respective publishers and authors. You can help correct errors and omissions. When requesting a correction, please mention this item's handle: RePEc:plo:pcbi00:1006501. See general information about how to correct material in RePEc.

    If you have authored this item and are not yet registered with RePEc, we encourage you to do it here. This allows to link your profile to this item. It also allows you to accept potential citations to this item that we are uncertain about.

    If CitEc recognized a bibliographic reference but did not link an item in RePEc to it, you can help with this form .

    If you know of missing items citing this one, you can help us creating those links by adding the relevant references in the same way as above, for each refering item. If you are a registered author of this item, you may also want to check the "citations" tab in your RePEc Author Service profile, as there may be some citations waiting for confirmation.

    For technical questions regarding this item, or to correct its authors, title, abstract, bibliographic or download information, contact: ploscompbiol (email available below). General contact details of provider: https://journals.plos.org/ploscompbiol/ .

    Please note that corrections may take a couple of weeks to filter through the various RePEc services.

    IDEAS is a RePEc service. RePEc uses bibliographic data supplied by the respective publishers.