IDEAS home Printed from https://ideas.repec.org/a/plo/pcbi00/1005023.html
   My bibliography  Save this article

The Statistical Determinants of the Speed of Motor Learning

Author

Listed:
  • Kang He
  • You Liang
  • Farnaz Abdollahi
  • Moria Fisher Bittmann
  • Konrad Kording
  • Kunlin Wei

Abstract

It has recently been suggested that movement variability directly increases the speed of motor learning. Here we use computational modeling of motor adaptation to show that variability can have a broad range of effects on learning, both negative and positive. Experimentally, we also find contributing and decelerating effects. Lastly, through a meta-analysis of published papers, we verify that across a wide range of experiments, movement variability has no statistical relation with learning rate. While motor learning is a complex process that can be modeled, further research is needed to understand the relative importance of the involved factors.Author Summary: Variability is a fundamental component of our motor behaviors. It is caused by numerous factors, including sensory, planning, neuromuscular noise, as well as random external perturbations. Investigation of its underpinnings has been a driving force for numerous theoretical advances in motor control. Recently, it has been suggested that initial motor variability can promote the speed of motor learning. We first demonstrate with a series of simulations of a common learning model that different factors leading to increased variability can affect learning rate in completely different directions, instead of merely the positive trend as claimed. Second, we present experimental evidence that sensory uncertainty, which affects motor variability, instead of variability per se, determines learning speed during trial-by-trial random perturbations. Third, we present results from a meta-analysis of published studies that show the same lack of positive correlation. We conclude that motor learning is not generally facilitated by initial motor variability. Instead, their relationship should be investigated by considering the factors that affect variability in a task-specific manner.

Suggested Citation

  • Kang He & You Liang & Farnaz Abdollahi & Moria Fisher Bittmann & Konrad Kording & Kunlin Wei, 2016. "The Statistical Determinants of the Speed of Motor Learning," PLOS Computational Biology, Public Library of Science, vol. 12(9), pages 1-20, September.
  • Handle: RePEc:plo:pcbi00:1005023
    DOI: 10.1371/journal.pcbi.1005023
    as

    Download full text from publisher

    File URL: https://journals.plos.org/ploscompbiol/article?id=10.1371/journal.pcbi.1005023
    Download Restriction: no

    File URL: https://journals.plos.org/ploscompbiol/article/file?id=10.1371/journal.pcbi.1005023&type=printable
    Download Restriction: no

    File URL: https://libkey.io/10.1371/journal.pcbi.1005023?utm_source=ideas
    LibKey link: if access is restricted and if your library uses this service, LibKey will redirect you to where you can use your library subscription to access this item
    ---><---

    References listed on IDEAS

    as
    1. Leslie C. Osborne & Stephen G. Lisberger & William Bialek, 2005. "A sensory source for motor variation," Nature, Nature, vol. 437(7057), pages 412-416, September.
    2. Christopher M. Harris & Daniel M. Wolpert, 1998. "Signal-dependent noise determines motor planning," Nature, Nature, vol. 394(6695), pages 780-784, August.
    3. Konrad P. Körding & Daniel M. Wolpert, 2004. "Bayesian integration in sensorimotor learning," Nature, Nature, vol. 427(6971), pages 244-247, January.
    Full references (including those not matched with items on IDEAS)

    Citations

    Citations are extracted by the CitEc Project, subscribe to its RSS feed for this item.
    as


    Cited by:

    1. Nicoletti, Giuseppe & von Rueden, Christina & Andrews, Dan, 2020. "Digital technology diffusion: A matter of capabilities, incentives or both?," European Economic Review, Elsevier, vol. 128(C).
    2. Nina M van Mastrigt & Jeroen B J Smeets & Katinka van der Kooij, 2020. "Quantifying exploration in reward-based motor learning," PLOS ONE, Public Library of Science, vol. 15(4), pages 1-14, April.
    3. Taghizadeh-Hesary, Farhad & Yoshino, Naoyuki & Fukuda, Lisa & Rasoulinezhad, Ehsan, 2021. "A model for calculating optimal credit guarantee fee for small and medium-sized enterprises," Economic Modelling, Elsevier, vol. 95(C), pages 361-373.
    4. Ignasi Cos, 2017. "Perceived effort for motor control and decision-making," PLOS Biology, Public Library of Science, vol. 15(8), pages 1-6, August.
    5. Daniel Blustein & Ahmed Shehata & Kevin Englehart & Jonathon Sensinger, 2018. "Conventional analysis of trial-by-trial adaptation is biased: Empirical and theoretical support using a Bayesian estimator," PLOS Computational Biology, Public Library of Science, vol. 14(12), pages 1-15, December.
    6. Xiuli Chen & Kieran Mohr & Joseph M Galea, 2017. "Predicting explorative motor learning using decision-making and motor noise," PLOS Computational Biology, Public Library of Science, vol. 13(4), pages 1-33, April.
    7. Joshua G A Cashaback & Christopher K Lao & Dimitrios J Palidis & Susan K Coltman & Heather R McGregor & Paul L Gribble, 2019. "The gradient of the reinforcement landscape influences sensorimotor learning," PLOS Computational Biology, Public Library of Science, vol. 15(3), pages 1-27, March.

    Most related items

    These are the items that most often cite the same works as this one and are cited by the same works as this one.
    1. Seth W. Egger & Stephen G. Lisberger, 2022. "Neural structure of a sensory decoder for motor control," Nature Communications, Nature, vol. 13(1), pages 1-13, December.
    2. Jonathan B Dingwell & Joby John & Joseph P Cusumano, 2010. "Do Humans Optimally Exploit Redundancy to Control Step Variability in Walking?," PLOS Computational Biology, Public Library of Science, vol. 6(7), pages 1-15, July.
    3. Shih-Wei Wu & Maria F Dal Martello & Laurence T Maloney, 2009. "Sub-Optimal Allocation of Time in Sequential Movements," PLOS ONE, Public Library of Science, vol. 4(12), pages 1-13, December.
    4. Vassilios N Christopoulos & Paul R Schrater, 2009. "Grasping Objects with Environmentally Induced Position Uncertainty," PLOS Computational Biology, Public Library of Science, vol. 5(10), pages 1-11, October.
    5. Ian H Stevenson & Hugo L Fernandes & Iris Vilares & Kunlin Wei & Konrad P Körding, 2009. "Bayesian Integration and Non-Linear Feedback Control in a Full-Body Motor Task," PLOS Computational Biology, Public Library of Science, vol. 5(12), pages 1-9, December.
    6. Paolo Tommasino & Antonella Maselli & Domenico Campolo & Francesco Lacquaniti & Andrea d’Avella, 2021. "A Hessian-based decomposition characterizes how performance in complex motor skills depends on individual strategy and variability," PLOS ONE, Public Library of Science, vol. 16(6), pages 1-32, June.
    7. Matteo Bertucco & Nasir H Bhanpuri & Terence D Sanger, 2015. "Perceived Cost and Intrinsic Motor Variability Modulate the Speed-Accuracy Trade-Off," PLOS ONE, Public Library of Science, vol. 10(10), pages 1-18, October.
    8. Dagmar Sternad & Masaki O Abe & Xiaogang Hu & Hermann Müller, 2011. "Neuromotor Noise, Error Tolerance and Velocity-Dependent Costs in Skilled Performance," PLOS Computational Biology, Public Library of Science, vol. 7(9), pages 1-15, September.
    9. Todd E Hudson & Laurence T Maloney & Michael S Landy, 2008. "Optimal Compensation for Temporal Uncertainty in Movement Planning," PLOS Computational Biology, Public Library of Science, vol. 4(7), pages 1-9, July.
    10. Shogo Yonekura & Yasuo Kuniyoshi, 2017. "Bodily motion fluctuation improves reaching success rate in a neurophysical agent via geometric-stochastic resonance," PLOS ONE, Public Library of Science, vol. 12(12), pages 1-16, December.
    11. Max Berniker & Megan K O’Brien & Konrad P Kording & Alaa A Ahmed, 2013. "An Examination of the Generalizability of Motor Costs," PLOS ONE, Public Library of Science, vol. 8(1), pages 1-11, January.
    12. Leopold Zizlsperger & Thomas Sauvigny & Thomas Haarmeier, 2012. "Selective Attention Increases Choice Certainty in Human Decision Making," PLOS ONE, Public Library of Science, vol. 7(7), pages 1-9, July.
    13. Geonhui Lee & Woong Choi & Hanjin Jo & Wookhyun Park & Jaehyo Kim, 2020. "Analysis of motor control strategy for frontal and sagittal planes of circular tracking movements using visual feedback noise from velocity change and depth information," PLOS ONE, Public Library of Science, vol. 15(11), pages 1-22, November.
    14. Wen-Hao Zhang & Si Wu & Krešimir Josić & Brent Doiron, 2023. "Sampling-based Bayesian inference in recurrent circuits of stochastic spiking neurons," Nature Communications, Nature, vol. 14(1), pages 1-19, December.
    15. Kenta Tominaga & André Lee & Eckart Altenmüller & Fumio Miyazaki & Shinichi Furuya, 2016. "Kinematic Origins of Motor Inconsistency in Expert Pianists," PLOS ONE, Public Library of Science, vol. 11(8), pages 1-15, August.
    16. Lionel Rigoux & Emmanuel Guigon, 2012. "A Model of Reward- and Effort-Based Optimal Decision Making and Motor Control," PLOS Computational Biology, Public Library of Science, vol. 8(10), pages 1-13, October.
    17. Caroline Haimerl & Douglas A. Ruff & Marlene R. Cohen & Cristina Savin & Eero P. Simoncelli, 2023. "Targeted V1 comodulation supports task-adaptive sensory decisions," Nature Communications, Nature, vol. 14(1), pages 1-15, December.
    18. Yanhao Ren & Qiang Luo & Wenlian Lu, 2023. "Synchronization Analysis of Linearly Coupled Systems with Signal-Dependent Noises," Mathematics, MDPI, vol. 11(10), pages 1-15, May.
    19. Adam N Sanborn & Ulrik R Beierholm, 2016. "Fast and Accurate Learning When Making Discrete Numerical Estimates," PLOS Computational Biology, Public Library of Science, vol. 12(4), pages 1-28, April.
    20. Christopher J Hasson & Zhaoran Zhang & Masaki O Abe & Dagmar Sternad, 2016. "Neuromotor Noise Is Malleable by Amplifying Perceived Errors," PLOS Computational Biology, Public Library of Science, vol. 12(8), pages 1-28, August.

    More about this item

    Statistics

    Access and download statistics

    Corrections

    All material on this site has been provided by the respective publishers and authors. You can help correct errors and omissions. When requesting a correction, please mention this item's handle: RePEc:plo:pcbi00:1005023. See general information about how to correct material in RePEc.

    If you have authored this item and are not yet registered with RePEc, we encourage you to do it here. This allows to link your profile to this item. It also allows you to accept potential citations to this item that we are uncertain about.

    If CitEc recognized a bibliographic reference but did not link an item in RePEc to it, you can help with this form .

    If you know of missing items citing this one, you can help us creating those links by adding the relevant references in the same way as above, for each refering item. If you are a registered author of this item, you may also want to check the "citations" tab in your RePEc Author Service profile, as there may be some citations waiting for confirmation.

    For technical questions regarding this item, or to correct its authors, title, abstract, bibliographic or download information, contact: ploscompbiol (email available below). General contact details of provider: https://journals.plos.org/ploscompbiol/ .

    Please note that corrections may take a couple of weeks to filter through the various RePEc services.

    IDEAS is a RePEc service. RePEc uses bibliographic data supplied by the respective publishers.