IDEAS home Printed from https://ideas.repec.org/a/plo/pcbi00/1006154.html
   My bibliography  Save this article

Informational structures: A dynamical system approach for integrated information

Author

Listed:
  • Francisco J Esteban
  • Javier A Galadí
  • José A Langa
  • José R Portillo
  • Fernando Soler-Toscano

Abstract

Integrated Information Theory (IIT) has become nowadays the most sensible general theory of consciousness. In addition to very important statements, it opens the door for an abstract (mathematical) formulation of the theory. Given a mechanism in a particular state, IIT identifies a conscious experience with a conceptual structure, an informational object which exists, is composed of identified parts, is informative, integrated and maximally irreducible. This paper introduces a space-time continuous version of the concept of integrated information. To this aim, a graph and a dynamical systems treatment is used to define, for a given mechanism in a state for which a dynamics is settled, an Informational Structure, which is associated to the global attractor at each time of the system. By definition, the informational structure determines all the past and future behavior of the system, possesses an informational nature and, moreover, enriches all the points of the phase space with cause-effect power by means of its associated Informational Field. A detailed description of its inner structure by invariants and connections between them allows to associate a transition probability matrix to each informational structure and to develop a measure for the level of integrated information of the system.Author summary: In this paper we introduce a space-time continuous version for the level of integrated information of a network on which a dynamics is defined. The concept of integrated information comes from the IIT of consciousness. By a strict mathematical formulation, we complement the existing IIT theoretical framework from a dynamical systems perspective. In other words, we develop the bases for a continuous mathematical approach to IIT introducing a dynamical system as the driving rule of a given mechanism. We also introduce and define the concepts of Informational Structure and Informational Field as the complex network with the power to ascertain the dynamics (past and future scenarios) of the studied phenomena. The detailed description of an informational structure is showing the cause-effect power of a mechanism in a state and thus, a characterization of the quantity and quality of information, and the way this is integrated. We firstly introduce how network patterns arise from dynamic phenomena on networks, leading to the concept of informational structure. Then, we formally introduce the mathematical objects supporting the theory, from graphs to informational structures, throughout the integration of dynamics on graphs with a global model of differential equations. After this, we formally present some of the IIT’s postulates associated to a given mechanism. Finally, we provide the quantitative and qualitative characterization of the integrated information, and how it depends on the geometry of the mechanism.

Suggested Citation

  • Francisco J Esteban & Javier A Galadí & José A Langa & José R Portillo & Fernando Soler-Toscano, 2018. "Informational structures: A dynamical system approach for integrated information," PLOS Computational Biology, Public Library of Science, vol. 14(9), pages 1-33, September.
  • Handle: RePEc:plo:pcbi00:1006154
    DOI: 10.1371/journal.pcbi.1006154
    as

    Download full text from publisher

    File URL: https://journals.plos.org/ploscompbiol/article?id=10.1371/journal.pcbi.1006154
    Download Restriction: no

    File URL: https://journals.plos.org/ploscompbiol/article/file?id=10.1371/journal.pcbi.1006154&type=printable
    Download Restriction: no

    File URL: https://libkey.io/10.1371/journal.pcbi.1006154?utm_source=ideas
    LibKey link: if access is restricted and if your library uses this service, LibKey will redirect you to where you can use your library subscription to access this item
    ---><---

    References listed on IDEAS

    as
    1. Masafumi Oizumi & Larissa Albantakis & Giulio Tononi, 2014. "From the Phenomenology to the Mechanisms of Consciousness: Integrated Information Theory 3.0," PLOS Computational Biology, Public Library of Science, vol. 10(5), pages 1-25, May.
    2. Ugo Bastolla & Miguel A. Fortuna & Alberto Pascual-García & Antonio Ferrera & Bartolo Luque & Jordi Bascompte, 2009. "The architecture of mutualistic networks minimizes competition and increases biodiversity," Nature, Nature, vol. 458(7241), pages 1018-1020, April.
    Full references (including those not matched with items on IDEAS)

    Citations

    Citations are extracted by the CitEc Project, subscribe to its RSS feed for this item.
    as


    Cited by:

    1. Galadí, J.A. & Soler-Toscano, F. & Langa, J.A., 2022. "Model transform and local parameters. Application to instantaneous attractors," Chaos, Solitons & Fractals, Elsevier, vol. 159(C).

    Most related items

    These are the items that most often cite the same works as this one and are cited by the same works as this one.
    1. Cristina Fiera & Jan Christian Habel & Werner Ulrich, 2018. "Neutral colonisations drive high beta-diversity in cavernicole springtails (Collembola)," PLOS ONE, Public Library of Science, vol. 13(1), pages 1-12, January.
    2. Colton Brehm & Astrid Layton, 2021. "Nestedness of eco‐industrial networks: Exploring linkage distribution to promote sustainable industrial growth," Journal of Industrial Ecology, Yale University, vol. 25(1), pages 205-218, February.
    3. Benadi, Gita & Blüthgen, Nico & Hovestadt, Thomas & Poethke, Hans-Joachim, 2013. "Contrasting specialization–stability relationships in plant–animal mutualistic systems," Ecological Modelling, Elsevier, vol. 258(C), pages 65-73.
    4. Leto Peel & Tiago P. Peixoto & Manlio De Domenico, 2022. "Statistical inference links data and theory in network science," Nature Communications, Nature, vol. 13(1), pages 1-15, December.
    5. Fabio Saracco & Riccardo Di Clemente & Andrea Gabrielli & Tiziano Squartini, 2015. "Detecting early signs of the 2007-2008 crisis in the world trade," Papers 1508.03533, arXiv.org, revised Jul 2016.
    6. Timothée Poisot & Sonia Kéfi & Serge Morand & Michal Stanko & Pablo A Marquet & Michael E Hochberg, 2015. "A Continuum of Specialists and Generalists in Empirical Communities," PLOS ONE, Public Library of Science, vol. 10(5), pages 1-12, May.
    7. Sabine Dritz & Rebecca A. Nelson & Fernanda S. Valdovinos, 2023. "The role of intra-guild indirect interactions in assembling plant-pollinator networks," Nature Communications, Nature, vol. 14(1), pages 1-13, December.
    8. Peter Gordon Roetzel, 2019. "Information overload in the information age: a review of the literature from business administration, business psychology, and related disciplines with a bibliometric approach and framework developmen," Business Research, Springer;German Academic Association for Business Research, vol. 12(2), pages 479-522, December.
    9. Sebastián Bustos & Charles Gomez & Ricardo Hausmann & César A Hidalgo, 2012. "The Dynamics of Nestedness Predicts the Evolution of Industrial Ecosystems," PLOS ONE, Public Library of Science, vol. 7(11), pages 1-8, November.
    10. Singer, Alexander & Johst, Karin & Banitz, Thomas & Fowler, Mike S. & Groeneveld, Jürgen & Gutiérrez, Alvaro G. & Hartig, Florian & Krug, Rainer M. & Liess, Matthias & Matlack, Glenn & Meyer, Katrin M, 2016. "Community dynamics under environmental change: How can next generation mechanistic models improve projections of species distributions?," Ecological Modelling, Elsevier, vol. 326(C), pages 63-74.
    11. David Engel & Thomas W Malone, 2018. "Integrated information as a metric for group interaction," PLOS ONE, Public Library of Science, vol. 13(10), pages 1-19, October.
    12. Antonio J. Ibáñez-Molina & Sergio Iglesias-Parro, 2018. "A Comparison between Theoretical and Experimental Measures of Consciousness as Integrated Information in an Anatomically Based Network of Coupled Oscillators," Complexity, Hindawi, vol. 2018, pages 1-8, April.
    13. Mika J. Straka & Guido Caldarelli & Tiziano Squartini & Fabio Saracco, 2017. "From Ecology to Finance (and Back?): Recent Advancements in the Analysis of Bipartite Networks," Papers 1710.10143, arXiv.org.
    14. Roberto Cazzolla Gatti & Roger Koppl & Brian D. Fath & Stuart Kauffman & Wim Hordijk & Robert E. Ulanowicz, 2020. "On the emergence of ecological and economic niches," Journal of Bioeconomics, Springer, vol. 22(2), pages 99-127, July.
    15. Takayuki Niizato & Kotaro Sakamoto & Yoh-ichi Mototake & Hisashi Murakami & Takenori Tomaru & Tomotaro Hoshika & Toshiki Fukushima, 2020. "Finding continuity and discontinuity in fish schools via integrated information theory," PLOS ONE, Public Library of Science, vol. 15(2), pages 1-29, February.
    16. Tuomo Mäki-Marttunen & Juha Kesseli & Matti Nykter, 2013. "Balance between Noise and Information Flow Maximizes Set Complexity of Network Dynamics," PLOS ONE, Public Library of Science, vol. 8(3), pages 1-10, March.
    17. , D. & Tessone, Claudio J. & ,, 2014. "Nestedness in networks: A theoretical model and some applications," Theoretical Economics, Econometric Society, vol. 9(3), September.
    18. Wanming Chen & Shengyuan Wang & Xiaolan Wu, 2022. "Growth Mechanism and Synchronization Effect of China’s New Energy Vehicle Enterprises: An Empirical Analysis Based on Moving Logistic and Kuramoto Model," Sustainability, MDPI, vol. 14(24), pages 1-17, December.
    19. Laura Hernandez & Annick Vignes & Stéphanie Saba, 2018. "Trust or robustness? An ecological approach to the study of auction and bilateral markets," Post-Print hal-02005040, HAL.
    20. Chengyi Tu & Joel Carr & Samir Suweis, 2016. "A data driven network approach to rank countries production diversity and food specialization," Papers 1606.01270, arXiv.org.

    More about this item

    Statistics

    Access and download statistics

    Corrections

    All material on this site has been provided by the respective publishers and authors. You can help correct errors and omissions. When requesting a correction, please mention this item's handle: RePEc:plo:pcbi00:1006154. See general information about how to correct material in RePEc.

    If you have authored this item and are not yet registered with RePEc, we encourage you to do it here. This allows to link your profile to this item. It also allows you to accept potential citations to this item that we are uncertain about.

    If CitEc recognized a bibliographic reference but did not link an item in RePEc to it, you can help with this form .

    If you know of missing items citing this one, you can help us creating those links by adding the relevant references in the same way as above, for each refering item. If you are a registered author of this item, you may also want to check the "citations" tab in your RePEc Author Service profile, as there may be some citations waiting for confirmation.

    For technical questions regarding this item, or to correct its authors, title, abstract, bibliographic or download information, contact: ploscompbiol (email available below). General contact details of provider: https://journals.plos.org/ploscompbiol/ .

    Please note that corrections may take a couple of weeks to filter through the various RePEc services.

    IDEAS is a RePEc service. RePEc uses bibliographic data supplied by the respective publishers.