IDEAS home Printed from https://ideas.repec.org/a/plo/pcbi00/1005961.html
   My bibliography  Save this article

An entropic barriers diffusion theory of decision-making in multiple alternative tasks

Author

Listed:
  • Diego Fernandez Slezak
  • Mariano Sigman
  • Guillermo A Cecchi

Abstract

We present a theory of decision-making in the presence of multiple choices that departs from traditional approaches by explicitly incorporating entropic barriers in a stochastic search process. We analyze response time data from an on-line repository of 15 million blitz chess games, and show that our model fits not just the mean and variance, but the entire response time distribution (over several response-time orders of magnitude) at every stage of the game. We apply the model to show that (a) higher cognitive expertise corresponds to the exploration of more complex solution spaces, and (b) reaction times of users at an on-line buying website can be similarly explained. Our model can be seen as a synergy between diffusion models used to model simple two-choice decision-making and planning agents in complex problem solving.Author summary: Decision-making has been studied in great detail relying on binary choices, modeled as the noisy accumulation of a decision variable to a threshold. We show that it breaks down when used to describe real-life human decision involving multiple options. We show instead that including obstacles in the diffusion model (a natural conceptual extension) can describe the data with great degree of accuracy. We evaluate this new model by capitalizing on the advent of big data, analyzing a vast corpus of decision making obtained from on-line chess servers. The present manuscript resolves a conflict between current theories of decision-making and concrete data, it solves this data with a concrete theoretical proposal and analyzes specific predictions of the model.

Suggested Citation

  • Diego Fernandez Slezak & Mariano Sigman & Guillermo A Cecchi, 2018. "An entropic barriers diffusion theory of decision-making in multiple alternative tasks," PLOS Computational Biology, Public Library of Science, vol. 14(3), pages 1-14, March.
  • Handle: RePEc:plo:pcbi00:1005961
    DOI: 10.1371/journal.pcbi.1005961
    as

    Download full text from publisher

    File URL: https://journals.plos.org/ploscompbiol/article?id=10.1371/journal.pcbi.1005961
    Download Restriction: no

    File URL: https://journals.plos.org/ploscompbiol/article/file?id=10.1371/journal.pcbi.1005961&type=printable
    Download Restriction: no

    File URL: https://libkey.io/10.1371/journal.pcbi.1005961?utm_source=ideas
    LibKey link: if access is restricted and if your library uses this service, LibKey will redirect you to where you can use your library subscription to access this item
    ---><---

    References listed on IDEAS

    as
    1. Mark E. Glickman, 1999. "Parameter Estimation in Large Dynamic Paired Comparison Experiments," Journal of the Royal Statistical Society Series C, Royal Statistical Society, vol. 48(3), pages 377-394.
    2. Mervyn Stone, 1960. "Models for choice-reaction time," Psychometrika, Springer;The Psychometric Society, vol. 25(3), pages 251-260, September.
    Full references (including those not matched with items on IDEAS)

    Most related items

    These are the items that most often cite the same works as this one and are cited by the same works as this one.
    1. Baker, Rose D. & McHale, Ian G., 2014. "A dynamic paired comparisons model: Who is the greatest tennis player?," European Journal of Operational Research, Elsevier, vol. 236(2), pages 677-684.
    2. Inhan Kang & Paul Boeck & Roger Ratcliff, 2022. "Modeling Conditional Dependence of Response Accuracy and Response Time with the Diffusion Item Response Theory Model," Psychometrika, Springer;The Psychometric Society, vol. 87(2), pages 725-748, June.
    3. Jacob D Davidson & Ahmed El Hady, 2019. "Foraging as an evidence accumulation process," PLOS Computational Biology, Public Library of Science, vol. 15(7), pages 1-25, July.
    4. Jiangbo Yu, 2022. "An elementary mechanism for simultaneously modeling discrete decisions and decision times," System Dynamics Review, System Dynamics Society, vol. 38(3), pages 215-245, July.
    5. Angelini, Giovanni & Candila, Vincenzo & De Angelis, Luca, 2022. "Weighted Elo rating for tennis match predictions," European Journal of Operational Research, Elsevier, vol. 297(1), pages 120-132.
    6. Thomas Otter & Joe Johnson & Jörg Rieskamp & Greg Allenby & Jeff Brazell & Adele Diederich & J. Hutchinson & Steven MacEachern & Shiling Ruan & Jim Townsend, 2008. "Sequential sampling models of choice: Some recent advances," Marketing Letters, Springer, vol. 19(3), pages 255-267, December.
    7. Cristiano Varin & Manuela Cattelan & David Firth, 2016. "Statistical modelling of citation exchange between statistics journals," Journal of the Royal Statistical Society Series A, Royal Statistical Society, vol. 179(1), pages 1-63, January.
    8. Owen G. Ward & Jing Wu & Tian Zheng & Anna L. Smith & James P. Curley, 2022. "Network Hawkes process models for exploring latent hierarchy in social animal interactions," Journal of the Royal Statistical Society Series C, Royal Statistical Society, vol. 71(5), pages 1402-1426, November.
    9. Chan Victor, 2011. "Prediction Accuracy of Linear Models for Paired Comparisons in Sports," Journal of Quantitative Analysis in Sports, De Gruyter, vol. 7(3), pages 1-35, July.
    10. Kovalchik Stephanie Ann, 2016. "Searching for the GOAT of tennis win prediction," Journal of Quantitative Analysis in Sports, De Gruyter, vol. 12(3), pages 127-138, September.
    11. Alexandra Grand & Regina Dittrich & Brian Francis, 2015. "Markov models of dependence in longitudinal paired comparisons: an application to course design," AStA Advances in Statistical Analysis, Springer;German Statistical Society, vol. 99(2), pages 237-257, April.
    12. Udo Boehm & Maarten Marsman & Han L. J. Maas & Gunter Maris, 2021. "An Attention-Based Diffusion Model for Psychometric Analyses," Psychometrika, Springer;The Psychometric Society, vol. 86(4), pages 938-972, December.
    13. Yuval Salant & Jörg L. Spenkuch, 2021. "Complexity and Choice," CESifo Working Paper Series 9239, CESifo.
    14. Blaž Krese & Erik Štrumbelj, 2021. "A Bayesian approach to time-varying latent strengths in pairwise comparisons," PLOS ONE, Public Library of Science, vol. 16(5), pages 1-17, May.
    15. Timothy L. H. Wong & Clifford B. Talbot & Gero Miesenböck, 2023. "Transient photocurrents in a subthreshold evidence accumulator accelerate perceptual decisions," Nature Communications, Nature, vol. 14(1), pages 1-9, December.
    16. Jaron T Colas, 2017. "Value-based decision making via sequential sampling with hierarchical competition and attentional modulation," PLOS ONE, Public Library of Science, vol. 12(10), pages 1-40, October.
    17. McHale, Ian & Morton, Alex, 2011. "A Bradley-Terry type model for forecasting tennis match results," International Journal of Forecasting, Elsevier, vol. 27(2), pages 619-630, April.
    18. Yoshio Takane & Justine Sergent, 1983. "Multidimensional scaling models for reaction times and same-different judgments," Psychometrika, Springer;The Psychometric Society, vol. 48(3), pages 393-423, September.
    19. Irons David J. & Buckley Stephen & Paulden Tim, 2014. "Developing an improved tennis ranking system," Journal of Quantitative Analysis in Sports, De Gruyter, vol. 10(2), pages 109-118, June.
    20. Drew Fudenberg & Whitney Newey & Philipp Strack & Tomasz Strzalecki, 2020. "Testing the drift-diffusion model," Proceedings of the National Academy of Sciences, Proceedings of the National Academy of Sciences, vol. 117(52), pages 33141-33148, December.

    More about this item

    Statistics

    Access and download statistics

    Corrections

    All material on this site has been provided by the respective publishers and authors. You can help correct errors and omissions. When requesting a correction, please mention this item's handle: RePEc:plo:pcbi00:1005961. See general information about how to correct material in RePEc.

    If you have authored this item and are not yet registered with RePEc, we encourage you to do it here. This allows to link your profile to this item. It also allows you to accept potential citations to this item that we are uncertain about.

    If CitEc recognized a bibliographic reference but did not link an item in RePEc to it, you can help with this form .

    If you know of missing items citing this one, you can help us creating those links by adding the relevant references in the same way as above, for each refering item. If you are a registered author of this item, you may also want to check the "citations" tab in your RePEc Author Service profile, as there may be some citations waiting for confirmation.

    For technical questions regarding this item, or to correct its authors, title, abstract, bibliographic or download information, contact: ploscompbiol (email available below). General contact details of provider: https://journals.plos.org/ploscompbiol/ .

    Please note that corrections may take a couple of weeks to filter through the various RePEc services.

    IDEAS is a RePEc service. RePEc uses bibliographic data supplied by the respective publishers.