IDEAS home Printed from https://ideas.repec.org/a/bpj/jqsprt/v13y2017i2p63-78n4.html
   My bibliography  Save this article

Ranking ultimate teams using a Bayesian score-augmented win-loss model

Author

Listed:
  • Murray Thomas A.

    (Department of Biostatistics, The University of Texas MD Anderson Cancer Center, Houston, TX, USA)

Abstract

Ultimate is a field sport played by two teams, each with seven players on the field. USA Ultimate administers nationwide leagues that consist of a regular season and post-season with Sectional, Regional, and National Championship tournaments. USA Ultimate ranks teams by applying an algorithm to the regular season results, and distributes the sixteen bids for the National Championship to the eight regions based on these rankings. Teams then compete at Regionals to earn the bids granted to their region. This article presents a novel score-augmented win-loss model for ranking Ultimate teams and distributing National Championship bids. The proposed approach facilitates predicting the placement of each qualifying team at the 2016 Club National Championships as well. The key innovations are the use of a pseudo-outcome called the win fraction that splits a win between the two teams based on the final score of their match, and a weighted quasi-likelihood function that facilitates discounting older results. The proposed approach is applied to the 2016 Club Division results. Rankings, bid allocations, and predictive placement probabilities are reported, as well as a comparative evaluation with the USA Ultimate algorithm, a win-loss model, and a point-scoring model.

Suggested Citation

  • Murray Thomas A., 2017. "Ranking ultimate teams using a Bayesian score-augmented win-loss model," Journal of Quantitative Analysis in Sports, De Gruyter, vol. 13(2), pages 63-78, June.
  • Handle: RePEc:bpj:jqsprt:v:13:y:2017:i:2:p:63-78:n:4
    DOI: 10.1515/jqas-2016-0097
    as

    Download full text from publisher

    File URL: https://doi.org/10.1515/jqas-2016-0097
    Download Restriction: For access to full text, subscription to the journal or payment for the individual article is required.

    File URL: https://libkey.io/10.1515/jqas-2016-0097?utm_source=ideas
    LibKey link: if access is restricted and if your library uses this service, LibKey will redirect you to where you can use your library subscription to access this item
    ---><---

    As the access to this document is restricted, you may want to search for a different version of it.

    References listed on IDEAS

    as
    1. Z. Yuan & R. Chappell & H. Bailey, 2007. "The Continual Reassessment Method for Multiple Toxicity Grades: A Bayesian Quasi-Likelihood Approach," Biometrics, The International Biometric Society, vol. 63(1), pages 173-179, March.
    2. Annis David H., 2007. "Dimension Reduction for Hybrid Paired Comparison Models," Journal of Quantitative Analysis in Sports, De Gruyter, vol. 3(2), pages 1-16, April.
    3. Frederick Mosteller, 1951. "Remarks on the method of paired comparisons: I. The least squares solution assuming equal standard deviations and equal correlations," Psychometrika, Springer;The Psychometric Society, vol. 16(1), pages 3-9, March.
    4. Mark E. Glickman, 1999. "Parameter Estimation in Large Dynamic Paired Comparison Experiments," Journal of the Royal Statistical Society Series C, Royal Statistical Society, vol. 48(3), pages 377-394.
    5. Nicholas G. Polson & James G. Scott & Jesse Windle, 2013. "Bayesian Inference for Logistic Models Using Pólya--Gamma Latent Variables," Journal of the American Statistical Association, Taylor & Francis Journals, vol. 108(504), pages 1339-1349, December.
    6. Papke, Leslie E & Wooldridge, Jeffrey M, 1996. "Econometric Methods for Fractional Response Variables with an Application to 401(K) Plan Participation Rates," Journal of Applied Econometrics, John Wiley & Sons, Ltd., vol. 11(6), pages 619-632, Nov.-Dec..
    7. Manuela Cattelan & Cristiano Varin & David Firth, 2013. "Dynamic Bradley–Terry modelling of sports tournaments," Journal of the Royal Statistical Society Series C, Royal Statistical Society, vol. 62(1), pages 135-150, January.
    8. Annis David H. & Craig Bruce A., 2005. "Hybrid Paired Comparison Analysis, with Applications to the Ranking of College Football Teams," Journal of Quantitative Analysis in Sports, De Gruyter, vol. 1(1), pages 1-33, October.
    Full references (including those not matched with items on IDEAS)

    Citations

    Citations are extracted by the CitEc Project, subscribe to its RSS feed for this item.
    as


    Cited by:

    1. Santos-Fernandez Edgar & Wu Paul & Mengersen Kerrie L., 2019. "Bayesian statistics meets sports: a comprehensive review," Journal of Quantitative Analysis in Sports, De Gruyter, vol. 15(4), pages 289-312, December.

    Most related items

    These are the items that most often cite the same works as this one and are cited by the same works as this one.
    1. Cristiano Varin & Manuela Cattelan & David Firth, 2016. "Statistical modelling of citation exchange between statistics journals," Journal of the Royal Statistical Society Series A, Royal Statistical Society, vol. 179(1), pages 1-63, January.
    2. Alexandra Grand & Regina Dittrich & Brian Francis, 2015. "Markov models of dependence in longitudinal paired comparisons: an application to course design," AStA Advances in Statistical Analysis, Springer;German Statistical Society, vol. 99(2), pages 237-257, April.
    3. Karl Andrew T., 2012. "The Sensitivity of College Football Rankings to Several Modeling Choices," Journal of Quantitative Analysis in Sports, De Gruyter, vol. 8(3), pages 1-44, October.
    4. Jen-Chieh Teng & Chin-Tsang Chiang & Alvin Lim, 2024. "An effective method for identifying clusters of robot strengths," Computational Statistics, Springer, vol. 39(6), pages 3303-3345, September.
    5. Lasek, Jan & Gagolewski, Marek, 2021. "Interpretable sports team rating models based on the gradient descent algorithm," International Journal of Forecasting, Elsevier, vol. 37(3), pages 1061-1071.
    6. Fagan Francois & Haugh Martin & Cooper Hal, 2019. "The advantage of lefties in one-on-one sports," Journal of Quantitative Analysis in Sports, De Gruyter, vol. 15(1), pages 1-25, March.
    7. Araki, Kenji & Hirose, Yoshihiro & Komaki, Fumiyasu, 2019. "Paired comparison models with age effects modeled as piecewise quadratic splines," International Journal of Forecasting, Elsevier, vol. 35(2), pages 733-740.
    8. Mark Glickman, 2001. "Dynamic paired comparison models with stochastic variances," Journal of Applied Statistics, Taylor & Francis Journals, vol. 28(6), pages 673-689.
    9. Lim, Alejandro & Chiang, Chin-Tsang & Teng, Jen-Chieh, 2021. "Estimating robot strengths with application to selection of alliance members in FIRST robotics competitions," Computational Statistics & Data Analysis, Elsevier, vol. 158(C).
    10. Jinsuk Yang & Qing Hao & Mahmut Yaşar, 2023. "Institutional investors and cross‐border mergers and acquisitions: The 2000–2018 period," International Review of Finance, International Review of Finance Ltd., vol. 23(3), pages 553-583, September.
    11. Alexander Klein & Karl Gunnar Persson & Paul Sharp, 2023. "Populism and the first wave of globalization: Evidence from the 1892 US presidential election," Rivista di storia economica, Società editrice il Mulino, issue 2, pages 163-202.
    12. Alperovych, Yan & Hübner, Georges & Lobet, Fabrice, 2015. "How does governmental versus private venture capital backing affect a firm's efficiency? Evidence from Belgium," Journal of Business Venturing, Elsevier, vol. 30(4), pages 508-525.
    13. Giuliani, Elisa & Martinelli, Arianna & Rabellotti, Roberta, 2016. "Is Co-Invention Expediting Technological Catch Up? A Study of Collaboration between Emerging Country Firms and EU Inventors," World Development, Elsevier, vol. 77(C), pages 192-205.
    14. Buddhavarapu, Prasad & Bansal, Prateek & Prozzi, Jorge A., 2021. "A new spatial count data model with time-varying parameters," Transportation Research Part B: Methodological, Elsevier, vol. 150(C), pages 566-586.
    15. Matthias Schmid & Florian Wickler & Kelly O Maloney & Richard Mitchell & Nora Fenske & Andreas Mayr, 2013. "Boosted Beta Regression," PLOS ONE, Public Library of Science, vol. 8(4), pages 1-15, April.
    16. Nguimkeu, Pierre & Zeufack, Albert, 2024. "Manufacturing in structural change in Africa," World Development, Elsevier, vol. 177(C).
    17. Christophe Hurlin & Jérémy Leymarie & Antoine Patin, 2018. "Loss functions for LGD model comparison," Working Papers halshs-01516147, HAL.
    18. Blackburn, McKinley L. & Vermilyea, Todd, 2012. "The prevalence and impact of misstated incomes on mortgage loan applications," Journal of Housing Economics, Elsevier, vol. 21(2), pages 151-168.
    19. Niko Hauzenberger & Florian Huber, 2020. "Model instability in predictive exchange rate regressions," Journal of Forecasting, John Wiley & Sons, Ltd., vol. 39(2), pages 168-186, March.
    20. de Rassenfosse, Gaétan, 2013. "Do firms face a trade-off between the quantity and the quality of their inventions?," Research Policy, Elsevier, vol. 42(5), pages 1072-1079.

    Corrections

    All material on this site has been provided by the respective publishers and authors. You can help correct errors and omissions. When requesting a correction, please mention this item's handle: RePEc:bpj:jqsprt:v:13:y:2017:i:2:p:63-78:n:4. See general information about how to correct material in RePEc.

    If you have authored this item and are not yet registered with RePEc, we encourage you to do it here. This allows to link your profile to this item. It also allows you to accept potential citations to this item that we are uncertain about.

    If CitEc recognized a bibliographic reference but did not link an item in RePEc to it, you can help with this form .

    If you know of missing items citing this one, you can help us creating those links by adding the relevant references in the same way as above, for each refering item. If you are a registered author of this item, you may also want to check the "citations" tab in your RePEc Author Service profile, as there may be some citations waiting for confirmation.

    For technical questions regarding this item, or to correct its authors, title, abstract, bibliographic or download information, contact: Peter Golla (email available below). General contact details of provider: https://www.degruyter.com .

    Please note that corrections may take a couple of weeks to filter through the various RePEc services.

    IDEAS is a RePEc service. RePEc uses bibliographic data supplied by the respective publishers.