IDEAS home Printed from https://ideas.repec.org/a/plo/pcbi00/1005864.html
   My bibliography  Save this article

The effect of spatial randomness on the average fixation time of mutants

Author

Listed:
  • Suzan Farhang-Sardroodi
  • Amir H Darooneh
  • Moladad Nikbakht
  • Natalia L Komarova
  • Mohammad Kohandel

Abstract

The mean conditional fixation time of a mutant is an important measure of stochastic population dynamics, widely studied in ecology and evolution. Here, we investigate the effect of spatial randomness on the mean conditional fixation time of mutants in a constant population of cells, N. Specifically, we assume that fitness values of wild type cells and mutants at different locations come from given probability distributions and do not change in time. We study spatial arrangements of cells on regular graphs with different degrees, from the circle to the complete graph, and vary assumptions on the fitness probability distributions. Some examples include: identical probability distributions for wild types and mutants; cases when only one of the cell types has random fitness values while the other has deterministic fitness; and cases where the mutants are advantaged or disadvantaged. Using analytical calculations and stochastic numerical simulations, we find that randomness has a strong impact on fixation time. In the case of complete graphs, randomness accelerates mutant fixation for all population sizes, and in the case of circular graphs, randomness delays mutant fixation for N larger than a threshold value (for small values of N, different behaviors are observed depending on the fitness distribution functions). These results emphasize fundamental differences in population dynamics under different assumptions on cell connectedness. They are explained by the existence of randomly occurring “dead zones” that can significantly delay fixation on networks with low connectivity; and by the existence of randomly occurring “lucky zones” that can facilitate fixation on networks of high connectivity. Results for death-birth and birth-death formulations of the Moran process, as well as for the (haploid) Wright Fisher model are presented.Author summary: We study the influence of randomness on evolutionary dynamics, assuming that a newly arising mutant may experience a different set of environments compared to the wild type. We calculate the mean conditional fixation time of the mutant under different assumptions on spatial interactions, and show that randomness has a strong impact on the fixation time. In particular, it delays the fixation of mutants on 1D circles and accelerates it on complete graphs (the so called mass action, or complete mixing, model). This result holds for advantageous, disadvantageous, and neutral (on average) mutants. The reason for this pattern is quite intuitive: in a rigid, 1D structure, randomness can by chance put a “roadblock” and disrupt mutant spread, causing significant delay. In higher dimensions, there are many ways for a mutant to spread, and it is difficult to block all of them by chance; on the other hand, randomness can enhance fixation by providing an “easier” path. The effects of a random environment are important in biological models such as bacterial growth or cancer initiation/progression.

Suggested Citation

  • Suzan Farhang-Sardroodi & Amir H Darooneh & Moladad Nikbakht & Natalia L Komarova & Mohammad Kohandel, 2017. "The effect of spatial randomness on the average fixation time of mutants," PLOS Computational Biology, Public Library of Science, vol. 13(11), pages 1-22, November.
  • Handle: RePEc:plo:pcbi00:1005864
    DOI: 10.1371/journal.pcbi.1005864
    as

    Download full text from publisher

    File URL: https://journals.plos.org/ploscompbiol/article?id=10.1371/journal.pcbi.1005864
    Download Restriction: no

    File URL: https://journals.plos.org/ploscompbiol/article/file?id=10.1371/journal.pcbi.1005864&type=printable
    Download Restriction: no

    File URL: https://libkey.io/10.1371/journal.pcbi.1005864?utm_source=ideas
    LibKey link: if access is restricted and if your library uses this service, LibKey will redirect you to where you can use your library subscription to access this item
    ---><---

    References listed on IDEAS

    as
    1. Erez Lieberman & Christoph Hauert & Martin A. Nowak, 2005. "Evolutionary dynamics on graphs," Nature, Nature, vol. 433(7023), pages 312-316, January.
    2. Wes Maciejewski & Feng Fu & Christoph Hauert, 2014. "Evolutionary Game Dynamics in Populations with Heterogenous Structures," PLOS Computational Biology, Public Library of Science, vol. 10(4), pages 1-16, April.
    3. Natalia L. Komarova, 2015. "A moving target," Nature, Nature, vol. 525(7568), pages 198-199, September.
    4. V S K Manem & K Kaveh & M Kohandel & S Sivaloganathan, 2015. "Modeling Invasion Dynamics with Spatial Random-Fitness Due to Micro-Environment," PLOS ONE, Public Library of Science, vol. 10(10), pages 1-20, October.
    Full references (including those not matched with items on IDEAS)

    Citations

    Citations are extracted by the CitEc Project, subscribe to its RSS feed for this item.
    as


    Cited by:

    1. Benjamin Allen & Christine Sample & Robert Jencks & James Withers & Patricia Steinhagen & Lori Brizuela & Joshua Kolodny & Darren Parke & Gabor Lippner & Yulia A Dementieva, 2020. "Transient amplifiers of selection and reducers of fixation for death-Birth updating on graphs," PLOS Computational Biology, Public Library of Science, vol. 16(1), pages 1-20, January.
    2. Kamran Kaveh & Alex McAvoy & Krishnendu Chatterjee & Martin A Nowak, 2020. "The Moran process on 2-chromatic graphs," PLOS Computational Biology, Public Library of Science, vol. 16(11), pages 1-18, November.
    3. Zhang, Libin & Yao, Zijun & Wu, Bin, 2021. "Calculating biodiversity under stochastic evolutionary dynamics," Applied Mathematics and Computation, Elsevier, vol. 411(C).

    Most related items

    These are the items that most often cite the same works as this one and are cited by the same works as this one.
    1. Benjamin Allen & Christine Sample & Yulia Dementieva & Ruben C Medeiros & Christopher Paoletti & Martin A Nowak, 2015. "The Molecular Clock of Neutral Evolution Can Be Accelerated or Slowed by Asymmetric Spatial Structure," PLOS Computational Biology, Public Library of Science, vol. 11(2), pages 1-32, February.
    2. Mark Broom & Jan Rychtář, 2018. "Ideal Cost-Free Distributions in Structured Populations for General Payoff Functions," Dynamic Games and Applications, Springer, vol. 8(1), pages 79-92, March.
    3. Sarkar, Bijan, 2021. "The cooperation–defection evolution on social networks," Physica A: Statistical Mechanics and its Applications, Elsevier, vol. 584(C).
    4. Alex McAvoy & Christoph Hauert, 2015. "Asymmetric Evolutionary Games," PLOS Computational Biology, Public Library of Science, vol. 11(8), pages 1-26, August.
    5. Laura Hindersin & Arne Traulsen, 2015. "Most Undirected Random Graphs Are Amplifiers of Selection for Birth-Death Dynamics, but Suppressors of Selection for Death-Birth Dynamics," PLOS Computational Biology, Public Library of Science, vol. 11(11), pages 1-14, November.
    6. Yao Meng & Sean P. Cornelius & Yang-Yu Liu & Aming Li, 2024. "Dynamics of collective cooperation under personalised strategy updates," Nature Communications, Nature, vol. 15(1), pages 1-11, December.
    7. Kamran Kaveh & Alex McAvoy & Krishnendu Chatterjee & Martin A Nowak, 2020. "The Moran process on 2-chromatic graphs," PLOS Computational Biology, Public Library of Science, vol. 16(11), pages 1-18, November.
    8. Konno, Tomohiko, 2013. "An imperfect competition on scale-free networks," Physica A: Statistical Mechanics and its Applications, Elsevier, vol. 392(21), pages 5453-5460.
    9. R. Bentley & Michael O’Brien & Paul Ormerod, 2011. "Quality versus mere popularity: a conceptual map for understanding human behavior," Mind & Society: Cognitive Studies in Economics and Social Sciences, Springer;Fondazione Rosselli, vol. 10(2), pages 181-191, December.
    10. Huang, Keke & Liu, Yishun & Zhang, Yichi & Yang, Chunhua & Wang, Zhen, 2018. "Understanding cooperative behavior of agents with heterogeneous perceptions in dynamic networks," Physica A: Statistical Mechanics and its Applications, Elsevier, vol. 509(C), pages 234-240.
    11. Xiang Wei & Peng Xu & Shuiting Du & Guanghui Yan & Huayan Pei, 2021. "Reputational preference-based payoff punishment promotes cooperation in spatial social dilemmas," The European Physical Journal B: Condensed Matter and Complex Systems, Springer;EDP Sciences, vol. 94(10), pages 1-7, October.
    12. Wang, Mengyao & Pan, Qiuhui & He, Mingfeng, 2020. "The effect of individual attitude on cooperation in social dilemma," Physica A: Statistical Mechanics and its Applications, Elsevier, vol. 555(C).
    13. Lv, Shaojie & Song, Feifei, 2022. "Particle swarm intelligence and the evolution of cooperation in the spatial public goods game with punishment," Applied Mathematics and Computation, Elsevier, vol. 412(C).
    14. Wu, Jieyu & Shao, Xinyu & Li, Jinhang & Huang, Gang, 2012. "Scale-free properties of information flux networks in genetic algorithms," Physica A: Statistical Mechanics and its Applications, Elsevier, vol. 391(4), pages 1692-1701.
    15. Benjamin Allen & Christine Sample & Robert Jencks & James Withers & Patricia Steinhagen & Lori Brizuela & Joshua Kolodny & Darren Parke & Gabor Lippner & Yulia A Dementieva, 2020. "Transient amplifiers of selection and reducers of fixation for death-Birth updating on graphs," PLOS Computational Biology, Public Library of Science, vol. 16(1), pages 1-20, January.
    16. K. Kułakowski, 2009. "The norm game: punishing enemies and not friends," Journal of Economic Interaction and Coordination, Springer;Society for Economic Science with Heterogeneous Interacting Agents, vol. 4(1), pages 27-37, June.
    17. Zhang, Hui & Wang, Li & Hou, Dongshuang, 2016. "Effect of the spatial autocorrelation of empty sites on the evolution of cooperation," Physica A: Statistical Mechanics and its Applications, Elsevier, vol. 443(C), pages 296-308.
    18. Huo, Ran & Durrett, Rick, 2018. "Latent voter model on locally tree-like random graphs," Stochastic Processes and their Applications, Elsevier, vol. 128(5), pages 1590-1614.
    19. Antoine Nongaillard & Philippe Mathieu, 2011. "Reallocation Problems in Agent Societies: A Local Mechanism to Maximize Social Welfare," Journal of Artificial Societies and Social Simulation, Journal of Artificial Societies and Social Simulation, vol. 14(3), pages 1-5.
    20. Laura Schmid & Farbod Ekbatani & Christian Hilbe & Krishnendu Chatterjee, 2023. "Quantitative assessment can stabilize indirect reciprocity under imperfect information," Nature Communications, Nature, vol. 14(1), pages 1-14, December.

    More about this item

    Statistics

    Access and download statistics

    Corrections

    All material on this site has been provided by the respective publishers and authors. You can help correct errors and omissions. When requesting a correction, please mention this item's handle: RePEc:plo:pcbi00:1005864. See general information about how to correct material in RePEc.

    If you have authored this item and are not yet registered with RePEc, we encourage you to do it here. This allows to link your profile to this item. It also allows you to accept potential citations to this item that we are uncertain about.

    If CitEc recognized a bibliographic reference but did not link an item in RePEc to it, you can help with this form .

    If you know of missing items citing this one, you can help us creating those links by adding the relevant references in the same way as above, for each refering item. If you are a registered author of this item, you may also want to check the "citations" tab in your RePEc Author Service profile, as there may be some citations waiting for confirmation.

    For technical questions regarding this item, or to correct its authors, title, abstract, bibliographic or download information, contact: ploscompbiol (email available below). General contact details of provider: https://journals.plos.org/ploscompbiol/ .

    Please note that corrections may take a couple of weeks to filter through the various RePEc services.

    IDEAS is a RePEc service. RePEc uses bibliographic data supplied by the respective publishers.