IDEAS home Printed from https://ideas.repec.org/a/eee/spapps/v128y2018i5p1590-1614.html
   My bibliography  Save this article

Latent voter model on locally tree-like random graphs

Author

Listed:
  • Huo, Ran
  • Durrett, Rick

Abstract

In the latent voter model, individuals who have just changed their choice have a latent period, which is exponential with rate λ, during which they will not change their opinion. We study this model on random graphs generated by a configuration model with degrees 3≤d(x)≤M. We show that if the number of vertices n→∞ and logn≪λn≪n then there is a quasi-stationary state in which each opinion has probability ≈1∕2 and persists in this state for a time that is ≥nm for any m<∞.

Suggested Citation

  • Huo, Ran & Durrett, Rick, 2018. "Latent voter model on locally tree-like random graphs," Stochastic Processes and their Applications, Elsevier, vol. 128(5), pages 1590-1614.
  • Handle: RePEc:eee:spapps:v:128:y:2018:i:5:p:1590-1614
    DOI: 10.1016/j.spa.2017.08.004
    as

    Download full text from publisher

    File URL: http://www.sciencedirect.com/science/article/pii/S0304414917301953
    Download Restriction: Full text for ScienceDirect subscribers only

    File URL: https://libkey.io/10.1016/j.spa.2017.08.004?utm_source=ideas
    LibKey link: if access is restricted and if your library uses this service, LibKey will redirect you to where you can use your library subscription to access this item
    ---><---

    As the access to this document is restricted, you may want to search for a different version of it.

    References listed on IDEAS

    as
    1. Erez Lieberman & Christoph Hauert & Martin A. Nowak, 2005. "Evolutionary dynamics on graphs," Nature, Nature, vol. 433(7023), pages 312-316, January.
    2. Cox, J. Theodore & Durrett, Rick, 2016. "Evolutionary games on the torus with weak selection," Stochastic Processes and their Applications, Elsevier, vol. 126(8), pages 2388-2409.
    Full references (including those not matched with items on IDEAS)

    Most related items

    These are the items that most often cite the same works as this one and are cited by the same works as this one.
    1. R. Bentley & Michael O’Brien & Paul Ormerod, 2011. "Quality versus mere popularity: a conceptual map for understanding human behavior," Mind & Society: Cognitive Studies in Economics and Social Sciences, Springer;Fondazione Rosselli, vol. 10(2), pages 181-191, December.
    2. Zhang, Hui & Wang, Li & Hou, Dongshuang, 2016. "Effect of the spatial autocorrelation of empty sites on the evolution of cooperation," Physica A: Statistical Mechanics and its Applications, Elsevier, vol. 443(C), pages 296-308.
    3. Laura Schmid & Farbod Ekbatani & Christian Hilbe & Krishnendu Chatterjee, 2023. "Quantitative assessment can stabilize indirect reciprocity under imperfect information," Nature Communications, Nature, vol. 14(1), pages 1-14, December.
    4. Feng, Sinan & Liu, Xuesong & Dong, Yida, 2022. "Limited punishment pool may promote cooperation in the public goods game," Chaos, Solitons & Fractals, Elsevier, vol. 165(P2).
    5. Wakano, Joe Yuichiro & Ohtsuki, Hisashi & Kobayashi, Yutaka, 2013. "A mathematical description of the inclusive fitness theory," Theoretical Population Biology, Elsevier, vol. 84(C), pages 46-55.
    6. Tetsushi Ohdaira, 2021. "Cooperation evolves by the payoff-difference-based probabilistic reward," The European Physical Journal B: Condensed Matter and Complex Systems, Springer;EDP Sciences, vol. 94(11), pages 1-8, November.
    7. Bryant, Adam S. & Lavrentovich, Maxim O., 2022. "Survival in branching cellular populations," Theoretical Population Biology, Elsevier, vol. 144(C), pages 13-23.
    8. McAvoy, Alex & Fraiman, Nicolas & Hauert, Christoph & Wakeley, John & Nowak, Martin A., 2018. "Public goods games in populations with fluctuating size," Theoretical Population Biology, Elsevier, vol. 121(C), pages 72-84.
    9. Qiguang An & Hongfeng Guo & Yating Zheng, 2022. "On Robust Stability and Stabilization of Networked Evolutionary Games with Time Delays," Mathematics, MDPI, vol. 10(15), pages 1-12, July.
    10. Nie, Yanyi & Zhong, Xiaoni & Lin, Tao & Wang, Wei, 2023. "Pathogen diversity in meta-population networks," Chaos, Solitons & Fractals, Elsevier, vol. 166(C).
    11. Hong, Lijun & Geng, Yini & Du, Chunpeng & Shen, Chen & Shi, Lei, 2021. "Average payoff-driven or imitation? A new evidence from evolutionary game theory in finite populations," Applied Mathematics and Computation, Elsevier, vol. 394(C).
    12. Alexander J. Stewart & Joshua B. Plotkin, 2015. "The Evolvability of Cooperation under Local and Non-Local Mutations," Games, MDPI, vol. 6(3), pages 1-20, July.
    13. Benjamin Allen & Christine Sample & Yulia Dementieva & Ruben C Medeiros & Christopher Paoletti & Martin A Nowak, 2015. "The Molecular Clock of Neutral Evolution Can Be Accelerated or Slowed by Asymmetric Spatial Structure," PLOS Computational Biology, Public Library of Science, vol. 11(2), pages 1-32, February.
    14. Thomas Graham & Maria Kleshnina & Jerzy A. Filar, 2023. "Where Do Mistakes Lead? A Survey of Games with Incompetent Players," Dynamic Games and Applications, Springer, vol. 13(1), pages 231-264, March.
    15. Li, Jing & Wang, Jiang, 2018. "Locality based wealth rule favors cooperation in costly public goods games," Chaos, Solitons & Fractals, Elsevier, vol. 116(C), pages 1-7.
    16. D. Timothy Bishop & Mark Broom & Richard Southwell, 2020. "Chris Cannings: A Life in Games," Dynamic Games and Applications, Springer, vol. 10(3), pages 591-617, September.
    17. Ding, Xueying & Li, Haitao & Yang, Qiqi & Zhou, Yingrui & Alsaedi, Ahmed & Alsaadi, Fuad E., 2017. "Stochastic stability and stabilization of n-person random evolutionary Boolean games," Applied Mathematics and Computation, Elsevier, vol. 306(C), pages 1-12.
    18. Benjamin Allen & Christine Sample & Patricia Steinhagen & Julia Shapiro & Matthew King & Timothy Hedspeth & Megan Goncalves, 2021. "Fixation probabilities in graph-structured populations under weak selection," PLOS Computational Biology, Public Library of Science, vol. 17(2), pages 1-25, February.
    19. Klaus Jaffe & Roberto Cipriani, 2007. "Culture Outsmarts Nature in the Evolution of Cooperation," Journal of Artificial Societies and Social Simulation, Journal of Artificial Societies and Social Simulation, vol. 10(1), pages 1-7.
    20. Spiekermann, Kai, 2009. "Sort out your neighbourhood: public good games on dynamic networks," LSE Research Online Documents on Economics 26739, London School of Economics and Political Science, LSE Library.

    More about this item

    Statistics

    Access and download statistics

    Corrections

    All material on this site has been provided by the respective publishers and authors. You can help correct errors and omissions. When requesting a correction, please mention this item's handle: RePEc:eee:spapps:v:128:y:2018:i:5:p:1590-1614. See general information about how to correct material in RePEc.

    If you have authored this item and are not yet registered with RePEc, we encourage you to do it here. This allows to link your profile to this item. It also allows you to accept potential citations to this item that we are uncertain about.

    If CitEc recognized a bibliographic reference but did not link an item in RePEc to it, you can help with this form .

    If you know of missing items citing this one, you can help us creating those links by adding the relevant references in the same way as above, for each refering item. If you are a registered author of this item, you may also want to check the "citations" tab in your RePEc Author Service profile, as there may be some citations waiting for confirmation.

    For technical questions regarding this item, or to correct its authors, title, abstract, bibliographic or download information, contact: Catherine Liu (email available below). General contact details of provider: http://www.elsevier.com/wps/find/journaldescription.cws_home/505572/description#description .

    Please note that corrections may take a couple of weeks to filter through the various RePEc services.

    IDEAS is a RePEc service. RePEc uses bibliographic data supplied by the respective publishers.