IDEAS home Printed from https://ideas.repec.org/a/plo/pcbi00/1005768.html
   My bibliography  Save this article

Predictive representations can link model-based reinforcement learning to model-free mechanisms

Author

Listed:
  • Evan M Russek
  • Ida Momennejad
  • Matthew M Botvinick
  • Samuel J Gershman
  • Nathaniel D Daw

Abstract

Humans and animals are capable of evaluating actions by considering their long-run future rewards through a process described using model-based reinforcement learning (RL) algorithms. The mechanisms by which neural circuits perform the computations prescribed by model-based RL remain largely unknown; however, multiple lines of evidence suggest that neural circuits supporting model-based behavior are structurally homologous to and overlapping with those thought to carry out model-free temporal difference (TD) learning. Here, we lay out a family of approaches by which model-based computation may be built upon a core of TD learning. The foundation of this framework is the successor representation, a predictive state representation that, when combined with TD learning of value predictions, can produce a subset of the behaviors associated with model-based learning, while requiring less decision-time computation than dynamic programming. Using simulations, we delineate the precise behavioral capabilities enabled by evaluating actions using this approach, and compare them to those demonstrated by biological organisms. We then introduce two new algorithms that build upon the successor representation while progressively mitigating its limitations. Because this framework can account for the full range of observed putatively model-based behaviors while still utilizing a core TD framework, we suggest that it represents a neurally plausible family of mechanisms for model-based evaluation.Author summary: According to standard models, when confronted with a choice, animals and humans rely on two separate, distinct processes to come to a decision. One process deliberatively evaluates the consequences of each candidate action and is thought to underlie the ability to flexibly come up with novel plans. The other process gradually increases the propensity to perform behaviors that were previously successful and is thought to underlie automatically executed, habitual reflexes. Although computational principles and animal behavior support this dichotomy, at the neural level, there is little evidence supporting a clean segregation. For instance, although dopamine—famously implicated in drug addiction and Parkinson’s disease—currently only has a well-defined role in the automatic process, evidence suggests that it also plays a role in the deliberative process. In this work, we present a computational framework for resolving this mismatch. We show that the types of behaviors associated with either process could result from a common learning mechanism applied to different strategies for how populations of neurons could represent candidate actions. In addition to demonstrating that this account can produce the full range of flexible behavior observed in the empirical literature, we suggest experiments that could detect the various approaches within this framework.

Suggested Citation

  • Evan M Russek & Ida Momennejad & Matthew M Botvinick & Samuel J Gershman & Nathaniel D Daw, 2017. "Predictive representations can link model-based reinforcement learning to model-free mechanisms," PLOS Computational Biology, Public Library of Science, vol. 13(9), pages 1-35, September.
  • Handle: RePEc:plo:pcbi00:1005768
    DOI: 10.1371/journal.pcbi.1005768
    as

    Download full text from publisher

    File URL: https://journals.plos.org/ploscompbiol/article?id=10.1371/journal.pcbi.1005768
    Download Restriction: no

    File URL: https://journals.plos.org/ploscompbiol/article/file?id=10.1371/journal.pcbi.1005768&type=printable
    Download Restriction: no

    File URL: https://libkey.io/10.1371/journal.pcbi.1005768?utm_source=ideas
    LibKey link: if access is restricted and if your library uses this service, LibKey will redirect you to where you can use your library subscription to access this item
    ---><---

    References listed on IDEAS

    as
    1. Thomas Akam & Rui Costa & Peter Dayan, 2015. "Simple Plans or Sophisticated Habits? State, Transition and Learning Interactions in the Two-Step Task," PLOS Computational Biology, Public Library of Science, vol. 11(12), pages 1-25, December.
    2. I. Momennejad & E. M. Russek & J. H. Cheong & M. M. Botvinick & N. D. Daw & S. J. Gershman, 2017. "The successor representation in human reinforcement learning," Nature Human Behaviour, Nature, vol. 1(9), pages 680-692, September.
    Full references (including those not matched with items on IDEAS)

    Citations

    Citations are extracted by the CitEc Project, subscribe to its RSS feed for this item.
    as


    Cited by:

    1. Jaron T Colas & Wolfgang M Pauli & Tobias Larsen & J Michael Tyszka & John P O’Doherty, 2017. "Distinct prediction errors in mesostriatal circuits of the human brain mediate learning about the values of both states and actions: evidence from high-resolution fMRI," PLOS Computational Biology, Public Library of Science, vol. 13(10), pages 1-32, October.
    2. Lucas Lehnert & Michael L Littman & Michael J Frank, 2020. "Reward-predictive representations generalize across tasks in reinforcement learning," PLOS Computational Biology, Public Library of Science, vol. 16(10), pages 1-27, October.

    Most related items

    These are the items that most often cite the same works as this one and are cited by the same works as this one.
    1. Julie J Lee & Mehdi Keramati, 2017. "Flexibility to contingency changes distinguishes habitual and goal-directed strategies in humans," PLOS Computational Biology, Public Library of Science, vol. 13(9), pages 1-15, September.
    2. Jaron T Colas & Wolfgang M Pauli & Tobias Larsen & J Michael Tyszka & John P O’Doherty, 2017. "Distinct prediction errors in mesostriatal circuits of the human brain mediate learning about the values of both states and actions: evidence from high-resolution fMRI," PLOS Computational Biology, Public Library of Science, vol. 13(10), pages 1-32, October.
    3. Wouter Kool & Fiery A Cushman & Samuel J Gershman, 2016. "When Does Model-Based Control Pay Off?," PLOS Computational Biology, Public Library of Science, vol. 12(8), pages 1-34, August.
    4. Johann Lussange & Stefano Vrizzi & Sacha Bourgeois-Gironde & Stefano Palminteri & Boris Gutkin, 2023. "Stock Price Formation: Precepts from a Multi-Agent Reinforcement Learning Model," Computational Economics, Springer;Society for Computational Economics, vol. 61(4), pages 1523-1544, April.
    5. Johann Lussange & Ivan Lazarevich & Sacha Bourgeois-Gironde & Stefano Palminteri & Boris Gutkin, 2021. "Modelling Stock Markets by Multi-agent Reinforcement Learning," Computational Economics, Springer;Society for Computational Economics, vol. 57(1), pages 113-147, January.
    6. He A Xu & Alireza Modirshanechi & Marco P Lehmann & Wulfram Gerstner & Michael H Herzog, 2021. "Novelty is not surprise: Human exploratory and adaptive behavior in sequential decision-making," PLOS Computational Biology, Public Library of Science, vol. 17(6), pages 1-32, June.
    7. Zhewei Zhang & Yuji K. Takahashi & Marlian Montesinos-Cartegena & Thorsten Kahnt & Angela J. Langdon & Geoffrey Schoenbaum, 2024. "Expectancy-related changes in firing of dopamine neurons depend on hippocampus," Nature Communications, Nature, vol. 15(1), pages 1-16, December.
    8. Amir Dezfouli & Bernard W Balleine, 2019. "Learning the structure of the world: The adaptive nature of state-space and action representations in multi-stage decision-making," PLOS Computational Biology, Public Library of Science, vol. 15(9), pages 1-22, September.
    9. Momchil S Tomov & Samyukta Yagati & Agni Kumar & Wanqian Yang & Samuel J Gershman, 2020. "Discovery of hierarchical representations for efficient planning," PLOS Computational Biology, Public Library of Science, vol. 16(4), pages 1-42, April.
    10. Liu, Hui & Yu, Chengqing & Wu, Haiping & Duan, Zhu & Yan, Guangxi, 2020. "A new hybrid ensemble deep reinforcement learning model for wind speed short term forecasting," Energy, Elsevier, vol. 202(C).
    11. Lucas Lehnert & Michael L Littman & Michael J Frank, 2020. "Reward-predictive representations generalize across tasks in reinforcement learning," PLOS Computational Biology, Public Library of Science, vol. 16(10), pages 1-27, October.
    12. Nicholas T Franklin & Michael J Frank, 2018. "Compositional clustering in task structure learning," PLOS Computational Biology, Public Library of Science, vol. 14(4), pages 1-25, April.
    13. Bruno Miranda & W M Nishantha Malalasekera & Timothy E Behrens & Peter Dayan & Steven W Kennerley, 2020. "Combined model-free and model-sensitive reinforcement learning in non-human primates," PLOS Computational Biology, Public Library of Science, vol. 16(6), pages 1-25, June.
    14. Ruohan Zhang & Shun Zhang & Matthew H Tong & Yuchen Cui & Constantin A Rothkopf & Dana H Ballard & Mary M Hayhoe, 2018. "Modeling sensory-motor decisions in natural behavior," PLOS Computational Biology, Public Library of Science, vol. 14(10), pages 1-22, October.
    15. repec:hal:journl:hal-04790290 is not listed on IDEAS

    More about this item

    Statistics

    Access and download statistics

    Corrections

    All material on this site has been provided by the respective publishers and authors. You can help correct errors and omissions. When requesting a correction, please mention this item's handle: RePEc:plo:pcbi00:1005768. See general information about how to correct material in RePEc.

    If you have authored this item and are not yet registered with RePEc, we encourage you to do it here. This allows to link your profile to this item. It also allows you to accept potential citations to this item that we are uncertain about.

    If CitEc recognized a bibliographic reference but did not link an item in RePEc to it, you can help with this form .

    If you know of missing items citing this one, you can help us creating those links by adding the relevant references in the same way as above, for each refering item. If you are a registered author of this item, you may also want to check the "citations" tab in your RePEc Author Service profile, as there may be some citations waiting for confirmation.

    For technical questions regarding this item, or to correct its authors, title, abstract, bibliographic or download information, contact: ploscompbiol (email available below). General contact details of provider: https://journals.plos.org/ploscompbiol/ .

    Please note that corrections may take a couple of weeks to filter through the various RePEc services.

    IDEAS is a RePEc service. RePEc uses bibliographic data supplied by the respective publishers.