IDEAS home Printed from https://ideas.repec.org/a/plo/pcbi00/1007594.html
   My bibliography  Save this article

Discovery of hierarchical representations for efficient planning

Author

Listed:
  • Momchil S Tomov
  • Samyukta Yagati
  • Agni Kumar
  • Wanqian Yang
  • Samuel J Gershman

Abstract

We propose that humans spontaneously organize environments into clusters of states that support hierarchical planning, enabling them to tackle challenging problems by breaking them down into sub-problems at various levels of abstraction. People constantly rely on such hierarchical presentations to accomplish tasks big and small—from planning one’s day, to organizing a wedding, to getting a PhD—often succeeding on the very first attempt. We formalize a Bayesian model of hierarchy discovery that explains how humans discover such useful abstractions. Building on principles developed in structure learning and robotics, the model predicts that hierarchy discovery should be sensitive to the topological structure, reward distribution, and distribution of tasks in the environment. In five simulations, we show that the model accounts for previously reported effects of environment structure on planning behavior, such as detection of bottleneck states and transitions. We then test the novel predictions of the model in eight behavioral experiments, demonstrating how the distribution of tasks and rewards can influence planning behavior via the discovered hierarchy, sometimes facilitating and sometimes hindering performance. We find evidence that the hierarchy discovery process unfolds incrementally across trials. Finally, we propose how hierarchy discovery and hierarchical planning might be implemented in the brain. Together, these findings present an important advance in our understanding of how the brain might use Bayesian inference to discover and exploit the hidden hierarchical structure of the environment.Author summary: Human planning is hierarchical. Whether planning something simple like cooking dinner or something complex like a trip abroad, we usually begin with a rough mental sketch of the goals we want to achieve (“go to Spain, then go back home”). This sketch is then progressively refined into a detailed sequence of sub-goals (“book flight”, “pack luggage”), sub-sub-goals, and so on, down to the actual sequence of bodily movements that is much more complicated than the original plan. Efficient planning therefore requires knowledge of the abstract high-level concepts that constitute the essence of hierarchical plans. Yet how humans learn such abstractions remains a mystery. In this study, we show that humans spontaneously form such high-level concepts in a way that allows them to plan efficiently given the tasks, rewards, and structure of their environment. We also show that this behavior is consistent with a formal model of the underlying computations, thus grounding these findings in established computational principles and relating them to previous studies of hierarchical planning. We believe our results pave the way for future studies to investigate the neural algorithms that support this essential cognitive ability.

Suggested Citation

  • Momchil S Tomov & Samyukta Yagati & Agni Kumar & Wanqian Yang & Samuel J Gershman, 2020. "Discovery of hierarchical representations for efficient planning," PLOS Computational Biology, Public Library of Science, vol. 16(4), pages 1-42, April.
  • Handle: RePEc:plo:pcbi00:1007594
    DOI: 10.1371/journal.pcbi.1007594
    as

    Download full text from publisher

    File URL: https://journals.plos.org/ploscompbiol/article?id=10.1371/journal.pcbi.1007594
    Download Restriction: no

    File URL: https://journals.plos.org/ploscompbiol/article/file?id=10.1371/journal.pcbi.1007594&type=printable
    Download Restriction: no

    File URL: https://libkey.io/10.1371/journal.pcbi.1007594?utm_source=ideas
    LibKey link: if access is restricted and if your library uses this service, LibKey will redirect you to where you can use your library subscription to access this item
    ---><---

    References listed on IDEAS

    as
    1. Volodymyr Mnih & Koray Kavukcuoglu & David Silver & Andrei A. Rusu & Joel Veness & Marc G. Bellemare & Alex Graves & Martin Riedmiller & Andreas K. Fidjeland & Georg Ostrovski & Stig Petersen & Charle, 2015. "Human-level control through deep reinforcement learning," Nature, Nature, vol. 518(7540), pages 529-533, February.
    2. Daniel Rasmussen & Aaron Voelker & Chris Eliasmith, 2017. "A neural model of hierarchical reinforcement learning," PLOS ONE, Public Library of Science, vol. 12(7), pages 1-39, July.
    3. Charley M. Wu & Eric Schulz & Maarten Speekenbrink & Jonathan D. Nelson & Björn Meder, 2018. "Generalization guides human exploration in vast decision spaces," Nature Human Behaviour, Nature, vol. 2(12), pages 915-924, December.
    4. I. Momennejad & E. M. Russek & J. H. Cheong & M. M. Botvinick & N. D. Daw & S. J. Gershman, 2017. "The successor representation in human reinforcement learning," Nature Human Behaviour, Nature, vol. 1(9), pages 680-692, September.
    Full references (including those not matched with items on IDEAS)

    Most related items

    These are the items that most often cite the same works as this one and are cited by the same works as this one.
    1. Liu, Hui & Yu, Chengqing & Wu, Haiping & Duan, Zhu & Yan, Guangxi, 2020. "A new hybrid ensemble deep reinforcement learning model for wind speed short term forecasting," Energy, Elsevier, vol. 202(C).
    2. Lucas Lehnert & Michael L Littman & Michael J Frank, 2020. "Reward-predictive representations generalize across tasks in reinforcement learning," PLOS Computational Biology, Public Library of Science, vol. 16(10), pages 1-27, October.
    3. Ruohan Zhang & Shun Zhang & Matthew H Tong & Yuchen Cui & Constantin A Rothkopf & Dana H Ballard & Mary M Hayhoe, 2018. "Modeling sensory-motor decisions in natural behavior," PLOS Computational Biology, Public Library of Science, vol. 14(10), pages 1-22, October.
    4. Tulika Saha & Sriparna Saha & Pushpak Bhattacharyya, 2020. "Towards sentiment aided dialogue policy learning for multi-intent conversations using hierarchical reinforcement learning," PLOS ONE, Public Library of Science, vol. 15(7), pages 1-28, July.
    5. Mahmoud Mahfouz & Angelos Filos & Cyrine Chtourou & Joshua Lockhart & Samuel Assefa & Manuela Veloso & Danilo Mandic & Tucker Balch, 2019. "On the Importance of Opponent Modeling in Auction Markets," Papers 1911.12816, arXiv.org.
    6. Imen Azzouz & Wiem Fekih Hassen, 2023. "Optimization of Electric Vehicles Charging Scheduling Based on Deep Reinforcement Learning: A Decentralized Approach," Energies, MDPI, vol. 16(24), pages 1-18, December.
    7. Jacob W. Crandall & Mayada Oudah & Tennom & Fatimah Ishowo-Oloko & Sherief Abdallah & Jean-François Bonnefon & Manuel Cebrian & Azim Shariff & Michael A. Goodrich & Iyad Rahwan, 2018. "Cooperating with machines," Nature Communications, Nature, vol. 9(1), pages 1-12, December.
      • Abdallah, Sherief & Bonnefon, Jean-François & Cebrian, Manuel & Crandall, Jacob W. & Ishowo-Oloko, Fatimah & Oudah, Mayada & Rahwan, Iyad & Shariff, Azim & Tennom,, 2017. "Cooperating with Machines," TSE Working Papers 17-806, Toulouse School of Economics (TSE).
      • Abdallah, Sherief & Bonnefon, Jean-François & Cebrian, Manuel & Crandall, Jacob W. & Ishowo-Oloko, Fatimah & Oudah, Mayada & Rahwan, Iyad & Shariff, Azim & Tennom,, 2017. "Cooperating with Machines," IAST Working Papers 17-68, Institute for Advanced Study in Toulouse (IAST).
      • Jacob Crandall & Mayada Oudah & Fatimah Ishowo-Oloko Tennom & Fatimah Ishowo-Oloko & Sherief Abdallah & Jean-François Bonnefon & Manuel Cebrian & Azim Shariff & Michael Goodrich & Iyad Rahwan, 2018. "Cooperating with machines," Post-Print hal-01897802, HAL.
    8. Sun, Alexander Y., 2020. "Optimal carbon storage reservoir management through deep reinforcement learning," Applied Energy, Elsevier, vol. 278(C).
    9. Yassine Chemingui & Adel Gastli & Omar Ellabban, 2020. "Reinforcement Learning-Based School Energy Management System," Energies, MDPI, vol. 13(23), pages 1-21, December.
    10. Woo Jae Byun & Bumkyu Choi & Seongmin Kim & Joohyun Jo, 2023. "Practical Application of Deep Reinforcement Learning to Optimal Trade Execution," FinTech, MDPI, vol. 2(3), pages 1-16, June.
    11. Lu, Yu & Xiang, Yue & Huang, Yuan & Yu, Bin & Weng, Liguo & Liu, Junyong, 2023. "Deep reinforcement learning based optimal scheduling of active distribution system considering distributed generation, energy storage and flexible load," Energy, Elsevier, vol. 271(C).
    12. Yuhong Wang & Lei Chen & Hong Zhou & Xu Zhou & Zongsheng Zheng & Qi Zeng & Li Jiang & Liang Lu, 2021. "Flexible Transmission Network Expansion Planning Based on DQN Algorithm," Energies, MDPI, vol. 14(7), pages 1-21, April.
    13. Huang, Ruchen & He, Hongwen & Gao, Miaojue, 2023. "Training-efficient and cost-optimal energy management for fuel cell hybrid electric bus based on a novel distributed deep reinforcement learning framework," Applied Energy, Elsevier, vol. 346(C).
    14. Michelle M. LaMar, 2018. "Markov Decision Process Measurement Model," Psychometrika, Springer;The Psychometric Society, vol. 83(1), pages 67-88, March.
    15. Zichen Lu & Ying Yan, 2024. "Temperature Control of Fuel Cell Based on PEI-DDPG," Energies, MDPI, vol. 17(7), pages 1-19, April.
    16. Yang, Ting & Zhao, Liyuan & Li, Wei & Zomaya, Albert Y., 2021. "Dynamic energy dispatch strategy for integrated energy system based on improved deep reinforcement learning," Energy, Elsevier, vol. 235(C).
    17. Wang, Xuan & Shu, Gequn & Tian, Hua & Wang, Rui & Cai, Jinwen, 2020. "Operation performance comparison of CCHP systems with cascade waste heat recovery systems by simulation and operation optimisation," Energy, Elsevier, vol. 206(C).
    18. Wang, Yi & Qiu, Dawei & Sun, Mingyang & Strbac, Goran & Gao, Zhiwei, 2023. "Secure energy management of multi-energy microgrid: A physical-informed safe reinforcement learning approach," Applied Energy, Elsevier, vol. 335(C).
    19. Parvez Farazi, Nahid & Zou, Bo & Tulabandhula, Theja, 2022. "Dynamic On-Demand Crowdshipping Using Constrained and Heuristics-Embedded Double Dueling Deep Q-Network," Transportation Research Part E: Logistics and Transportation Review, Elsevier, vol. 166(C).
    20. Louback, Eduardo & Biswas, Atriya & Machado, Fabricio & Emadi, Ali, 2024. "A review of the design process of energy management systems for dual-motor battery electric vehicles," Renewable and Sustainable Energy Reviews, Elsevier, vol. 193(C).

    More about this item

    Statistics

    Access and download statistics

    Corrections

    All material on this site has been provided by the respective publishers and authors. You can help correct errors and omissions. When requesting a correction, please mention this item's handle: RePEc:plo:pcbi00:1007594. See general information about how to correct material in RePEc.

    If you have authored this item and are not yet registered with RePEc, we encourage you to do it here. This allows to link your profile to this item. It also allows you to accept potential citations to this item that we are uncertain about.

    If CitEc recognized a bibliographic reference but did not link an item in RePEc to it, you can help with this form .

    If you know of missing items citing this one, you can help us creating those links by adding the relevant references in the same way as above, for each refering item. If you are a registered author of this item, you may also want to check the "citations" tab in your RePEc Author Service profile, as there may be some citations waiting for confirmation.

    For technical questions regarding this item, or to correct its authors, title, abstract, bibliographic or download information, contact: ploscompbiol (email available below). General contact details of provider: https://journals.plos.org/ploscompbiol/ .

    Please note that corrections may take a couple of weeks to filter through the various RePEc services.

    IDEAS is a RePEc service. RePEc uses bibliographic data supplied by the respective publishers.