IDEAS home Printed from https://ideas.repec.org/a/eee/phsmap/v517y2019icp53-65.html
   My bibliography  Save this article

Exploring the heterogeneity for node importance byvon Neumann entropy

Author

Listed:
  • Feng, Xiangnan
  • Wei, Wei
  • Zhang, Renquan
  • Wang, Jiannan
  • Shi, Ying
  • Zheng, Zhiming

Abstract

When analyzing and describing the statistical and topological characteristics of complex networks, the heterogeneity can provide profound and systematical recognition to illustrate the difference of individuals, and many node significance indices have been investigated to describe heterogeneity in different perspectives. In this paper a new node heterogeneity index based on the von Neumann entropy is proposed, which allows us to investigate the differences of nodes features in the view of spectrum eigenvalues distribution, and examples in reality networks present its great performance in selecting crucial individuals. Then to lower down the computational complexity, an approximation calculation to this index is given which only depends on its first and second neighbors. Furthermore, in reducing the network heterogeneity index by Estrada, this entropy heterogeneity presents excellent efficiency in Erdös–Rényi and scale-free networks compared to other node significance measurements; in reducing the average clustering coefficient, this node entropy index could break down the cluster structures efficiently in random geometric graphs, even faster than clustering coefficient itself. This new methodology reveals the node heterogeneity and significance in the perspective of spectrum, which provides a new insight into networks research and performs great potentials to discover essential structural features in networks.

Suggested Citation

  • Feng, Xiangnan & Wei, Wei & Zhang, Renquan & Wang, Jiannan & Shi, Ying & Zheng, Zhiming, 2019. "Exploring the heterogeneity for node importance byvon Neumann entropy," Physica A: Statistical Mechanics and its Applications, Elsevier, vol. 517(C), pages 53-65.
  • Handle: RePEc:eee:phsmap:v:517:y:2019:i:c:p:53-65
    DOI: 10.1016/j.physa.2018.11.019
    as

    Download full text from publisher

    File URL: http://www.sciencedirect.com/science/article/pii/S0378437118314274
    Download Restriction: Full text for ScienceDirect subscribers only. Journal offers the option of making the article available online on Science direct for a fee of $3,000

    File URL: https://libkey.io/10.1016/j.physa.2018.11.019?utm_source=ideas
    LibKey link: if access is restricted and if your library uses this service, LibKey will redirect you to where you can use your library subscription to access this item
    ---><---

    As the access to this document is restricted, you may want to search for a different version of it.

    References listed on IDEAS

    as
    1. Gert Sabidussi, 1966. "The centrality index of a graph," Psychometrika, Springer;The Psychometric Society, vol. 31(4), pages 581-603, December.
    2. Flaviano Morone & Hernán A. Makse, 2015. "Influence maximization in complex networks through optimal percolation," Nature, Nature, vol. 524(7563), pages 65-68, August.
    Full references (including those not matched with items on IDEAS)

    Citations

    Citations are extracted by the CitEc Project, subscribe to its RSS feed for this item.
    as


    Cited by:

    1. Yang, Qing-Lin & Wang, Li-Fu & Zhao, Guo-Tao & Guo, Ge, 2020. "A coarse graining algorithm based on m-order degree in complex network," Physica A: Statistical Mechanics and its Applications, Elsevier, vol. 558(C).

    Most related items

    These are the items that most often cite the same works as this one and are cited by the same works as this one.
    1. Wu, Tao & Xian, Xingping & Zhong, Linfeng & Xiong, Xi & Stanley, H. Eugene, 2018. "Power iteration ranking via hybrid diffusion for vital nodes identification," Physica A: Statistical Mechanics and its Applications, Elsevier, vol. 506(C), pages 802-815.
    2. Xia, Ling-Ling & Song, Yu-Rong & Li, Chan-Chan & Jiang, Guo-Ping, 2018. "Improved targeted immunization strategies based on two rounds of selection," Physica A: Statistical Mechanics and its Applications, Elsevier, vol. 496(C), pages 540-547.
    3. Namtirtha, Amrita & Dutta, Animesh & Dutta, Biswanath, 2018. "Identifying influential spreaders in complex networks based on kshell hybrid method," Physica A: Statistical Mechanics and its Applications, Elsevier, vol. 499(C), pages 310-324.
    4. Wang, Zhixiao & Zhao, Ya & Xi, Jingke & Du, Changjiang, 2016. "Fast ranking influential nodes in complex networks using a k-shell iteration factor," Physica A: Statistical Mechanics and its Applications, Elsevier, vol. 461(C), pages 171-181.
    5. Yin, Haofei & Zhang, Aobo & Zeng, An, 2023. "Identifying hidden target nodes for spreading in complex networks," Chaos, Solitons & Fractals, Elsevier, vol. 168(C).
    6. Zhu, Weihua & Liu, Kai & Wang, Ming & Yan, Xiaoyong, 2018. "Enhancing robustness of metro networks using strategic defense," Physica A: Statistical Mechanics and its Applications, Elsevier, vol. 503(C), pages 1081-1091.
    7. Xie, Zheng & Lv, Yiqin & Song, Yiping & Wang, Qi, 2024. "Data labeling through the centralities of co-reference networks improves the classification accuracy of scientific papers," Journal of Informetrics, Elsevier, vol. 18(2).
    8. Almeira, Nahuel & Perotti, Juan Ignacio & Chacoma, Andrés & Billoni, Orlando Vito, 2021. "Explosive dismantling of two-dimensional random lattices under betweenness centrality attacks," Chaos, Solitons & Fractals, Elsevier, vol. 153(P1).
    9. Zhong, Lin-Feng & Shang, Ming-Sheng & Chen, Xiao-Long & Cai, Shi-Ming, 2018. "Identifying the influential nodes via eigen-centrality from the differences and similarities of structure," Physica A: Statistical Mechanics and its Applications, Elsevier, vol. 510(C), pages 77-82.
    10. Bao, Zhong-Kui & Ma, Chuang & Xiang, Bing-Bing & Zhang, Hai-Feng, 2017. "Identification of influential nodes in complex networks: Method from spreading probability viewpoint," Physica A: Statistical Mechanics and its Applications, Elsevier, vol. 468(C), pages 391-397.
    11. Liu, Ying & Tang, Ming & Zhou, Tao & Do, Younghae, 2016. "Identify influential spreaders in complex networks, the role of neighborhood," Physica A: Statistical Mechanics and its Applications, Elsevier, vol. 452(C), pages 289-298.
    12. Zhai, Li & Yan, Xiangbin & Zhang, Guojing, 2018. "Bi-directional h-index: A new measure of node centrality in weighted and directed networks," Journal of Informetrics, Elsevier, vol. 12(1), pages 299-314.
    13. Zhong, Lin-Feng & Liu, Quan-Hui & Wang, Wei & Cai, Shi-Min, 2018. "Comprehensive influence of local and global characteristics on identifying the influential nodes," Physica A: Statistical Mechanics and its Applications, Elsevier, vol. 511(C), pages 78-84.
    14. Bi, Jialin & Jin, Ji & Qu, Cunquan & Zhan, Xiuxiu & Wang, Guanghui & Yan, Guiying, 2021. "Temporal gravity model for important node identification in temporal networks," Chaos, Solitons & Fractals, Elsevier, vol. 147(C).
    15. Hou, Lei, 2022. "Network versus content: The effectiveness in identifying opinion leaders in an online social network with empirical evaluation," Physica A: Statistical Mechanics and its Applications, Elsevier, vol. 592(C).
    16. De Masi, G. & Giovannetti, G. & Ricchiuti, G., 2013. "Network analysis to detect common strategies in Italian foreign direct investment," Physica A: Statistical Mechanics and its Applications, Elsevier, vol. 392(5), pages 1202-1214.
    17. Fogel, Kathy & Jandik, Tomas & McCumber, William R., 2018. "CFO social capital and private debt," Journal of Corporate Finance, Elsevier, vol. 52(C), pages 28-52.
    18. Hyuk-Soo Kwon & Jihong Lee & Sokbae Lee & Ryungha Oh, 2022. "Knowledge spillovers and patent citations: trends in geographic localization, 1976–2015," Economics of Innovation and New Technology, Taylor & Francis Journals, vol. 31(3), pages 123-147, April.
    19. Mengying Cui & David Levinson, 2018. "Accessibility analysis of risk severity," Transportation, Springer, vol. 45(4), pages 1029-1050, July.
    20. Chen, Dandan & Zheng, Muhua & Zhao, Ming & Zhang, Yu, 2018. "A dynamic vaccination strategy to suppress the recurrent epidemic outbreaks," Chaos, Solitons & Fractals, Elsevier, vol. 113(C), pages 108-114.

    Corrections

    All material on this site has been provided by the respective publishers and authors. You can help correct errors and omissions. When requesting a correction, please mention this item's handle: RePEc:eee:phsmap:v:517:y:2019:i:c:p:53-65. See general information about how to correct material in RePEc.

    If you have authored this item and are not yet registered with RePEc, we encourage you to do it here. This allows to link your profile to this item. It also allows you to accept potential citations to this item that we are uncertain about.

    If CitEc recognized a bibliographic reference but did not link an item in RePEc to it, you can help with this form .

    If you know of missing items citing this one, you can help us creating those links by adding the relevant references in the same way as above, for each refering item. If you are a registered author of this item, you may also want to check the "citations" tab in your RePEc Author Service profile, as there may be some citations waiting for confirmation.

    For technical questions regarding this item, or to correct its authors, title, abstract, bibliographic or download information, contact: Catherine Liu (email available below). General contact details of provider: http://www.journals.elsevier.com/physica-a-statistical-mechpplications/ .

    Please note that corrections may take a couple of weeks to filter through the various RePEc services.

    IDEAS is a RePEc service. RePEc uses bibliographic data supplied by the respective publishers.