IDEAS home Printed from https://ideas.repec.org/a/plo/pcbi00/1005612.html
   My bibliography  Save this article

A novel algorithm identifies stress-induced alterations in mitochondrial connectivity and inner membrane structure from confocal images

Author

Listed:
  • Mathieu Ouellet
  • Gérald Guillebaud
  • Valerie Gervais
  • David Lupien St-Pierre
  • Marc Germain

Abstract

Mitochondria exist as a highly interconnected network that is exquisitely sensitive to variations in nutrient availability, as well as a large array of cellular stresses. Changes in length and connectivity of this network, as well as alterations in the mitochondrial inner membrane (cristae), regulate cell fate by controlling metabolism, proliferation, differentiation, and cell death. Given the key roles of mitochondrial dynamics, the process by which mitochondria constantly fuse and fragment, the measure of mitochondrial length and connectivity provides crucial information on the health and activity of various cell populations. However, despite the importance of accurately measuring mitochondrial networks, the tools required to rapidly and accurately provide this information are lacking. Here, we developed a novel probabilistic approach to automatically measure mitochondrial length distribution and connectivity from confocal images. This method accurately identified mitochondrial changes caused by starvation or the inhibition of mitochondrial function. In addition, we successfully used the algorithm to measure changes in mitochondrial inner membrane/matrix occurring in response to Complex III inhibitors. As cristae rearrangements play a critical role in metabolic regulation and cell survival, this provides a rapid method to screen for proteins or compounds affecting this process. The algorithm will thus provide a robust tool to dissect the molecular mechanisms underlying the key roles of mitochondria in the regulation of cell fate.Author summary: Mitochondria are the main providers of cellular energy and as such, play a crucial role in many cellular processes whose deregulation are linked to both neurodegenerative diseases and cancer. In order to perform their functions, mitochondria dynamically regulate their length, assemble into interconnected networks and modulate their internal structure. Measuring these mitochondrial dynamics can thus provide important information about cellular state. Although some automated methods can provide a partial assessment of mitochondrial networks, the gold standard remains manual quantification, a time-consuming process. Here, we developed a new algorithm that accurately identifies both mitochondrial elongation and fragmentation occurring in response to different cellular stresses, as well as concomitant changes in mitochondrial connectivity and their internal structure. Given its sensitivity and ease of use, the algorithm will provide a robust tool to dissect the mechanisms by which mitochondria regulate cell fate.

Suggested Citation

  • Mathieu Ouellet & Gérald Guillebaud & Valerie Gervais & David Lupien St-Pierre & Marc Germain, 2017. "A novel algorithm identifies stress-induced alterations in mitochondrial connectivity and inner membrane structure from confocal images," PLOS Computational Biology, Public Library of Science, vol. 13(6), pages 1-23, June.
  • Handle: RePEc:plo:pcbi00:1005612
    DOI: 10.1371/journal.pcbi.1005612
    as

    Download full text from publisher

    File URL: https://journals.plos.org/ploscompbiol/article?id=10.1371/journal.pcbi.1005612
    Download Restriction: no

    File URL: https://journals.plos.org/ploscompbiol/article/file?id=10.1371/journal.pcbi.1005612&type=printable
    Download Restriction: no

    File URL: https://libkey.io/10.1371/journal.pcbi.1005612?utm_source=ideas
    LibKey link: if access is restricted and if your library uses this service, LibKey will redirect you to where you can use your library subscription to access this item
    ---><---

    References listed on IDEAS

    as
    1. Jonathan R. Friedman & Jodi Nunnari, 2014. "Mitochondrial form and function," Nature, Nature, vol. 505(7483), pages 335-343, January.
    2. Jyh-Ying Peng & Chung-Chih Lin & Yen-Jen Chen & Lung-Sen Kao & Young-Chau Liu & Chung-Chien Chou & Yi-Hung Huang & Fang-Rong Chang & Yang-Chang Wu & Yuh-Show Tsai & Chun-Nan Hsu, 2011. "Automatic Morphological Subtyping Reveals New Roles of Caspases in Mitochondrial Dynamics," PLOS Computational Biology, Public Library of Science, vol. 7(10), pages 1-14, October.
    3. Mireille Khacho & Michelle Tarabay & David Patten & Pamela Khacho & Jason G. MacLaurin & Jennifer Guadagno & Richard Bergeron & Sean P. Cregan & Mary-Ellen Harper & David S. Park & Ruth S. Slack, 2014. "Acidosis overrides oxygen deprivation to maintain mitochondrial function and cell survival," Nature Communications, Nature, vol. 5(1), pages 1-15, May.
    Full references (including those not matched with items on IDEAS)

    Most related items

    These are the items that most often cite the same works as this one and are cited by the same works as this one.
    1. Donghua Hu & Min Tan & Dongliang Lu & Brian Kleiboeker & Xuejing Liu & Hongsuk Park & Alexxai V. Kravitz & Kooresh I. Shoghi & Yu-Hua Tseng & Babak Razani & Akihiro Ikeda & Irfan J. Lodhi, 2023. "TMEM135 links peroxisomes to the regulation of brown fat mitochondrial fission and energy homeostasis," Nature Communications, Nature, vol. 14(1), pages 1-20, December.
    2. Sun Woo Sophie Kang & Rory P. Cunningham & Colin B. Miller & Lauryn A. Brown & Constance M. Cultraro & Adam Harned & Kedar Narayan & Jonathan Hernandez & Lisa M. Jenkins & Alexei Lobanov & Maggie Cam , 2024. "A spatial map of hepatic mitochondria uncovers functional heterogeneity shaped by nutrient-sensing signaling," Nature Communications, Nature, vol. 15(1), pages 1-17, December.
    3. Shuaifeng Li & Shixun Han & Qi Zhang & Yibing Zhu & Haitao Zhang & Junli Wang & Yang Zhao & Jianhui Zhao & Lin Su & Li Li & Dawang Zhou & Cunqi Ye & Xin-Hua Feng & Tingbo Liang & Bin Zhao, 2022. "FUNDC2 promotes liver tumorigenesis by inhibiting MFN1-mediated mitochondrial fusion," Nature Communications, Nature, vol. 13(1), pages 1-16, December.
    4. Kangqiang Qiu & Weiwei Zou & Hongbao Fang & Mingang Hao & Kritika Mehta & Zhiqi Tian & Jun-Lin Guan & Kai Zhang & Taosheng Huang & Jiajie Diao, 2022. "Light-activated mitochondrial fission through optogenetic control of mitochondria-lysosome contacts," Nature Communications, Nature, vol. 13(1), pages 1-9, December.
    5. Yan Zou & Yajing Sun & Yibin Wang & Dongya Zhang & Huiqing Yang & Xin Wang & Meng Zheng & Bingyang Shi, 2023. "Cancer cell-mitochondria hybrid membrane coated Gboxin loaded nanomedicines for glioblastoma treatment," Nature Communications, Nature, vol. 14(1), pages 1-19, December.
    6. Kanwar Abhay Singh & John Soukar & Mohammad Zulkifli & Anna Kersey & Giriraj Lokhande & Sagnika Ghosh & Aparna Murali & Natalie M. Garza & Harman Kaur & Justin N. Keeney & Ramu Banavath & Hatice Ceyla, 2024. "Atomic vacancies of molybdenum disulfide nanoparticles stimulate mitochondrial biogenesis," Nature Communications, Nature, vol. 15(1), pages 1-15, December.
    7. Luca Simula & Mattia Fumagalli & Lene Vimeux & Irena Rajnpreht & Philippe Icard & Gary Birsen & Dongjie An & Frédéric Pendino & Adrien Rouault & Nadège Bercovici & Diane Damotte & Audrey Lupo-Mansuet , 2024. "Mitochondrial metabolism sustains CD8+ T cell migration for an efficient infiltration into solid tumors," Nature Communications, Nature, vol. 15(1), pages 1-23, December.
    8. Emma Puighermanal & Marta Luna-Sánchez & Alejandro Gella & Gunter van der Walt & Andrea Urpi & María Royo & Paula Tena-Morraja & Isabella Appiah & Maria Helena de Donato & Fabien Menardy & Patrizia Bi, 2024. "Cannabidiol ameliorates mitochondrial disease via PPARγ activation in preclinical models," Nature Communications, Nature, vol. 15(1), pages 1-21, December.
    9. Michael Webb & Jyoti Malhotra & Chui-Se Tham & Matthew Goddeeris & Douglas W McMillin & Effie Tozzo, 2017. "A Novel Mitophagy Assay for Skeletal Myotubes," Open Access Journal of Neurology & Neurosurgery, Juniper Publishers Inc., vol. 4(4), pages 79-86, July.
    10. Joana Sá-Pessoa & Sara López-Montesino & Kornelia Przybyszewska & Isabel Rodríguez-Escudero & Helina Marshall & Adelia Ova & Gunnar N. Schroeder & Peter Barabas & María Molina & Tim Curtis & Víctor J., 2023. "A trans-kingdom T6SS effector induces the fragmentation of the mitochondrial network and activates innate immune receptor NLRX1 to promote infection," Nature Communications, Nature, vol. 14(1), pages 1-20, December.
    11. Stephen M. Coscia & Andrew S. Moore & Cameron P. Thompson & Christian F. Tirrito & E. Michael Ostap & Erika L. F. Holzbaur, 2024. "An interphase actin wave promotes mitochondrial content mixing and organelle homeostasis," Nature Communications, Nature, vol. 15(1), pages 1-15, December.
    12. Eunah Kim & Andrea Annibal & Yujin Lee & Hae-Eun H. Park & Seokjin Ham & Dae-Eun Jeong & Younghun Kim & Sangsoon Park & Sujeong Kwon & Yoonji Jung & JiSoo Park & Sieun S. Kim & Adam Antebi & Seung-Jae, 2023. "Mitochondrial aconitase suppresses immunity by modulating oxaloacetate and the mitochondrial unfolded protein response," Nature Communications, Nature, vol. 14(1), pages 1-16, December.
    13. Scharf, Yael, 2017. "A chaotic outlook on biological systems," Chaos, Solitons & Fractals, Elsevier, vol. 95(C), pages 42-47.

    More about this item

    Statistics

    Access and download statistics

    Corrections

    All material on this site has been provided by the respective publishers and authors. You can help correct errors and omissions. When requesting a correction, please mention this item's handle: RePEc:plo:pcbi00:1005612. See general information about how to correct material in RePEc.

    If you have authored this item and are not yet registered with RePEc, we encourage you to do it here. This allows to link your profile to this item. It also allows you to accept potential citations to this item that we are uncertain about.

    If CitEc recognized a bibliographic reference but did not link an item in RePEc to it, you can help with this form .

    If you know of missing items citing this one, you can help us creating those links by adding the relevant references in the same way as above, for each refering item. If you are a registered author of this item, you may also want to check the "citations" tab in your RePEc Author Service profile, as there may be some citations waiting for confirmation.

    For technical questions regarding this item, or to correct its authors, title, abstract, bibliographic or download information, contact: ploscompbiol (email available below). General contact details of provider: https://journals.plos.org/ploscompbiol/ .

    Please note that corrections may take a couple of weeks to filter through the various RePEc services.

    IDEAS is a RePEc service. RePEc uses bibliographic data supplied by the respective publishers.