IDEAS home Printed from https://ideas.repec.org/a/plo/pcbi00/1005600.html
   My bibliography  Save this article

Rosetta:MSF: a modular framework for multi-state computational protein design

Author

Listed:
  • Patrick Löffler
  • Samuel Schmitz
  • Enrico Hupfeld
  • Reinhard Sterner
  • Rainer Merkl

Abstract

Computational protein design (CPD) is a powerful technique to engineer existing proteins or to design novel ones that display desired properties. Rosetta is a software suite including algorithms for computational modeling and analysis of protein structures and offers many elaborate protocols created to solve highly specific tasks of protein engineering. Most of Rosetta’s protocols optimize sequences based on a single conformation (i. e. design state). However, challenging CPD objectives like multi-specificity design or the concurrent consideration of positive and negative design goals demand the simultaneous assessment of multiple states. This is why we have developed the multi-state framework MSF that facilitates the implementation of Rosetta’s single-state protocols in a multi-state environment and made available two frequently used protocols. Utilizing MSF, we demonstrated for one of these protocols that multi-state design yields a 15% higher performance than single-state design on a ligand-binding benchmark consisting of structural conformations. With this protocol, we designed de novo nine retro-aldolases on a conformational ensemble deduced from a (βα)8-barrel protein. All variants displayed measurable catalytic activity, testifying to a high success rate for this concept of multi-state enzyme design.Author summary: Protein engineering, i. e. the targeted modification or design of proteins has tremendous potential for medical and industrial applications. One generally applicable strategy for protein engineering is rational protein design: based on detailed knowledge of structure and function, computer programs like Rosetta propose the sequence of a protein possessing the desired properties. So far, most computer protocols have used rigid structures for design, which is a simplification because a protein’s structure is more accurately specified by a conformational ensemble. We have now implemented a framework for computational protein design that allows certain design protocols of Rosetta to make use of multiple design states like structural ensembles. An in silico assessment simulating ligand-binding design showed that this new approach generates more reliably native-like sequences than a single-state approach. As a proof-of-concept, we introduced de novo retro-aldolase activity into a scaffold protein and characterized nine variants experimentally, all of which were catalytically active.

Suggested Citation

  • Patrick Löffler & Samuel Schmitz & Enrico Hupfeld & Reinhard Sterner & Rainer Merkl, 2017. "Rosetta:MSF: a modular framework for multi-state computational protein design," PLOS Computational Biology, Public Library of Science, vol. 13(6), pages 1-24, June.
  • Handle: RePEc:plo:pcbi00:1005600
    DOI: 10.1371/journal.pcbi.1005600
    as

    Download full text from publisher

    File URL: https://journals.plos.org/ploscompbiol/article?id=10.1371/journal.pcbi.1005600
    Download Restriction: no

    File URL: https://journals.plos.org/ploscompbiol/article/file?id=10.1371/journal.pcbi.1005600&type=printable
    Download Restriction: no

    File URL: https://libkey.io/10.1371/journal.pcbi.1005600?utm_source=ideas
    LibKey link: if access is restricted and if your library uses this service, LibKey will redirect you to where you can use your library subscription to access this item
    ---><---

    References listed on IDEAS

    as
    1. Andrew Leaver-Fay & Ron Jacak & P Benjamin Stranges & Brian Kuhlman, 2011. "A Generic Program for Multistate Protein Design," PLOS ONE, Public Library of Science, vol. 6(7), pages 1-17, July.
    2. Gevorg Grigoryan & Aaron W. Reinke & Amy E. Keating, 2009. "Design of protein-interaction specificity gives selective bZIP-binding peptides," Nature, Nature, vol. 458(7240), pages 859-864, April.
    3. Alexander M Sevy & Tim M Jacobs & James E Crowe Jr. & Jens Meiler, 2015. "Design of Protein Multi-specificity Using an Independent Sequence Search Reduces the Barrier to Low Energy Sequences," PLOS Computational Biology, Public Library of Science, vol. 11(7), pages 1-23, July.
    4. Elisabeth L Humphris & Tanja Kortemme, 2007. "Design of Multi-Specificity in Protein Interfaces," PLOS Computational Biology, Public Library of Science, vol. 3(8), pages 1-14, August.
    5. Justin Ashworth & James J. Havranek & Carlos M. Duarte & Django Sussman & Raymond J. Monnat & Barry L. Stoddard & David Baker, 2006. "Computational redesign of endonuclease DNA binding and cleavage specificity," Nature, Nature, vol. 441(7093), pages 656-659, June.
    Full references (including those not matched with items on IDEAS)

    Most related items

    These are the items that most often cite the same works as this one and are cited by the same works as this one.
    1. Alexander M Sevy & Tim M Jacobs & James E Crowe Jr. & Jens Meiler, 2015. "Design of Protein Multi-specificity Using an Independent Sequence Search Reduces the Barrier to Low Energy Sequences," PLOS Computational Biology, Public Library of Science, vol. 11(7), pages 1-23, July.
    2. Aliza B Rubenstein & Manasi A Pethe & Sagar D Khare, 2017. "MFPred: Rapid and accurate prediction of protein-peptide recognition multispecificity using self-consistent mean field theory," PLOS Computational Biology, Public Library of Science, vol. 13(6), pages 1-24, June.
    3. Jordan R Willis & Bryan S Briney & Samuel L DeLuca & James E Crowe Jr & Jens Meiler, 2013. "Human Germline Antibody Gene Segments Encode Polyspecific Antibodies," PLOS Computational Biology, Public Library of Science, vol. 9(4), pages 1-14, April.
    4. Alexander M Sevy & Swetasudha Panda & James E Crowe Jr & Jens Meiler & Yevgeniy Vorobeychik, 2018. "Integrating linear optimization with structural modeling to increase HIV neutralization breadth," PLOS Computational Biology, Public Library of Science, vol. 14(2), pages 1-18, February.
    5. Ulaganathan, Kandasamy & Goud, Sravanthi & Reddy, Madhavi & Kayalvili, Ulaganathan, 2017. "Genome engineering for breaking barriers in lignocellulosic bioethanol production," Renewable and Sustainable Energy Reviews, Elsevier, vol. 74(C), pages 1080-1107.
    6. Vladimir Potapov & Jenifer B Kaplan & Amy E Keating, 2015. "Data-Driven Prediction and Design of bZIP Coiled-Coil Interactions," PLOS Computational Biology, Public Library of Science, vol. 11(2), pages 1-28, February.
    7. Colin A Smith & Tanja Kortemme, 2011. "Predicting the Tolerated Sequences for Proteins and Protein Interfaces Using RosettaBackrub Flexible Backbone Design," PLOS ONE, Public Library of Science, vol. 6(7), pages 1-11, July.
    8. Hege Beard & Anuradha Cholleti & David Pearlman & Woody Sherman & Kathryn A Loving, 2013. "Applying Physics-Based Scoring to Calculate Free Energies of Binding for Single Amino Acid Mutations in Protein-Protein Complexes," PLOS ONE, Public Library of Science, vol. 8(12), pages 1-1, December.
    9. Julian Nazet & Elmar Lang & Rainer Merkl, 2021. "Rosetta:MSF:NN: Boosting performance of multi-state computational protein design with a neural network," PLOS ONE, Public Library of Science, vol. 16(8), pages 1-23, August.
    10. Zhiqiang Yan & Jin Wang, 2013. "Optimizing Scoring Function of Protein-Nucleic Acid Interactions with Both Affinity and Specificity," PLOS ONE, Public Library of Science, vol. 8(9), pages 1-8, September.
    11. Steven Schulz & Sébastien Boyer & Matteo Smerlak & Simona Cocco & Rémi Monasson & Clément Nizak & Olivier Rivoire, 2021. "Parameters and determinants of responses to selection in antibody libraries," PLOS Computational Biology, Public Library of Science, vol. 17(3), pages 1-24, March.
    12. Andrew Leaver-Fay & Ron Jacak & P Benjamin Stranges & Brian Kuhlman, 2011. "A Generic Program for Multistate Protein Design," PLOS ONE, Public Library of Science, vol. 6(7), pages 1-17, July.
    13. Vanessa M. Macias & Johanna R. Ohm & Jason L. Rasgon, 2017. "Gene Drive for Mosquito Control: Where Did It Come from and Where Are We Headed?," IJERPH, MDPI, vol. 14(9), pages 1-30, September.
    14. Sarel J Fleishman & Andrew Leaver-Fay & Jacob E Corn & Eva-Maria Strauch & Sagar D Khare & Nobuyasu Koga & Justin Ashworth & Paul Murphy & Florian Richter & Gordon Lemmon & Jens Meiler & David Baker, 2011. "RosettaScripts: A Scripting Language Interface to the Rosetta Macromolecular Modeling Suite," PLOS ONE, Public Library of Science, vol. 6(6), pages 1-10, June.

    More about this item

    Statistics

    Access and download statistics

    Corrections

    All material on this site has been provided by the respective publishers and authors. You can help correct errors and omissions. When requesting a correction, please mention this item's handle: RePEc:plo:pcbi00:1005600. See general information about how to correct material in RePEc.

    If you have authored this item and are not yet registered with RePEc, we encourage you to do it here. This allows to link your profile to this item. It also allows you to accept potential citations to this item that we are uncertain about.

    If CitEc recognized a bibliographic reference but did not link an item in RePEc to it, you can help with this form .

    If you know of missing items citing this one, you can help us creating those links by adding the relevant references in the same way as above, for each refering item. If you are a registered author of this item, you may also want to check the "citations" tab in your RePEc Author Service profile, as there may be some citations waiting for confirmation.

    For technical questions regarding this item, or to correct its authors, title, abstract, bibliographic or download information, contact: ploscompbiol (email available below). General contact details of provider: https://journals.plos.org/ploscompbiol/ .

    Please note that corrections may take a couple of weeks to filter through the various RePEc services.

    IDEAS is a RePEc service. RePEc uses bibliographic data supplied by the respective publishers.