IDEAS home Printed from https://ideas.repec.org/a/plo/pone00/0082849.html
   My bibliography  Save this article

Applying Physics-Based Scoring to Calculate Free Energies of Binding for Single Amino Acid Mutations in Protein-Protein Complexes

Author

Listed:
  • Hege Beard
  • Anuradha Cholleti
  • David Pearlman
  • Woody Sherman
  • Kathryn A Loving

Abstract

Predicting changes in protein binding affinity due to single amino acid mutations helps us better understand the driving forces underlying protein-protein interactions and design improved biotherapeutics. Here, we use the MM-GBSA approach with the OPLS2005 force field and the VSGB2.0 solvent model to calculate differences in binding free energy between wild type and mutant proteins. Crucially, we made no changes to the scoring model as part of this work on protein-protein binding affinity—the energy model has been developed for structure prediction and has previously been validated only for calculating the energetics of small molecule binding. Here, we compare predictions to experimental data for a set of 418 single residue mutations in 21 targets and find that the MM-GBSA model, on average, performs well at scoring these single protein residue mutations. Correlation between the predicted and experimental change in binding affinity is statistically significant and the model performs well at picking “hotspots,” or mutations that change binding affinity by more than 1 kcal/mol. The promising performance of this physics-based method with no tuned parameters for predicting binding energies suggests that it can be transferred to other protein engineering problems.

Suggested Citation

  • Hege Beard & Anuradha Cholleti & David Pearlman & Woody Sherman & Kathryn A Loving, 2013. "Applying Physics-Based Scoring to Calculate Free Energies of Binding for Single Amino Acid Mutations in Protein-Protein Complexes," PLOS ONE, Public Library of Science, vol. 8(12), pages 1-1, December.
  • Handle: RePEc:plo:pone00:0082849
    DOI: 10.1371/journal.pone.0082849
    as

    Download full text from publisher

    File URL: https://journals.plos.org/plosone/article?id=10.1371/journal.pone.0082849
    Download Restriction: no

    File URL: https://journals.plos.org/plosone/article/file?id=10.1371/journal.pone.0082849&type=printable
    Download Restriction: no

    File URL: https://libkey.io/10.1371/journal.pone.0082849?utm_source=ideas
    LibKey link: if access is restricted and if your library uses this service, LibKey will redirect you to where you can use your library subscription to access this item
    ---><---

    References listed on IDEAS

    as
    1. Gevorg Grigoryan & Aaron W. Reinke & Amy E. Keating, 2009. "Design of protein-interaction specificity gives selective bZIP-binding peptides," Nature, Nature, vol. 458(7240), pages 859-864, April.
    Full references (including those not matched with items on IDEAS)

    Citations

    Citations are extracted by the CitEc Project, subscribe to its RSS feed for this item.
    as


    Cited by:

    1. Kenneth N McGuinness & Weilan Pan & Robert P Sheridan & Grant Murphy & Alejandro Crespo, 2018. "Role of simple descriptors and applicability domain in predicting change in protein thermostability," PLOS ONE, Public Library of Science, vol. 13(9), pages 1-25, September.
    2. Mathieu Ferrari & Matteo Righi & Vania Baldan & Patrycja Wawrzyniecka & Anna Bulek & Alexander Kinna & Biao Ma & Reyisa Bughda & Zulaikha Akbar & Saket Srivastava & Isaac Gannon & Mathew Robson & Jame, 2024. "Structure-guided engineering of immunotherapies targeting TRBC1 and TRBC2 in T cell malignancies," Nature Communications, Nature, vol. 15(1), pages 1-16, December.
    3. Marharyta Petukh & Minghui Li & Emil Alexov, 2015. "Predicting Binding Free Energy Change Caused by Point Mutations with Knowledge-Modified MM/PBSA Method," PLOS Computational Biology, Public Library of Science, vol. 11(7), pages 1-23, July.

    Most related items

    These are the items that most often cite the same works as this one and are cited by the same works as this one.
    1. Alexander M Sevy & Tim M Jacobs & James E Crowe Jr. & Jens Meiler, 2015. "Design of Protein Multi-specificity Using an Independent Sequence Search Reduces the Barrier to Low Energy Sequences," PLOS Computational Biology, Public Library of Science, vol. 11(7), pages 1-23, July.
    2. Aliza B Rubenstein & Manasi A Pethe & Sagar D Khare, 2017. "MFPred: Rapid and accurate prediction of protein-peptide recognition multispecificity using self-consistent mean field theory," PLOS Computational Biology, Public Library of Science, vol. 13(6), pages 1-24, June.
    3. Vladimir Potapov & Jenifer B Kaplan & Amy E Keating, 2015. "Data-Driven Prediction and Design of bZIP Coiled-Coil Interactions," PLOS Computational Biology, Public Library of Science, vol. 11(2), pages 1-28, February.
    4. Patrick Löffler & Samuel Schmitz & Enrico Hupfeld & Reinhard Sterner & Rainer Merkl, 2017. "Rosetta:MSF: a modular framework for multi-state computational protein design," PLOS Computational Biology, Public Library of Science, vol. 13(6), pages 1-24, June.

    More about this item

    Statistics

    Access and download statistics

    Corrections

    All material on this site has been provided by the respective publishers and authors. You can help correct errors and omissions. When requesting a correction, please mention this item's handle: RePEc:plo:pone00:0082849. See general information about how to correct material in RePEc.

    If you have authored this item and are not yet registered with RePEc, we encourage you to do it here. This allows to link your profile to this item. It also allows you to accept potential citations to this item that we are uncertain about.

    If CitEc recognized a bibliographic reference but did not link an item in RePEc to it, you can help with this form .

    If you know of missing items citing this one, you can help us creating those links by adding the relevant references in the same way as above, for each refering item. If you are a registered author of this item, you may also want to check the "citations" tab in your RePEc Author Service profile, as there may be some citations waiting for confirmation.

    For technical questions regarding this item, or to correct its authors, title, abstract, bibliographic or download information, contact: plosone (email available below). General contact details of provider: https://journals.plos.org/plosone/ .

    Please note that corrections may take a couple of weeks to filter through the various RePEc services.

    IDEAS is a RePEc service. RePEc uses bibliographic data supplied by the respective publishers.