IDEAS home Printed from https://ideas.repec.org/a/plo/pone00/0256691.html
   My bibliography  Save this article

Rosetta:MSF:NN: Boosting performance of multi-state computational protein design with a neural network

Author

Listed:
  • Julian Nazet
  • Elmar Lang
  • Rainer Merkl

Abstract

Rational protein design aims at the targeted modification of existing proteins. To reach this goal, software suites like Rosetta propose sequences to introduce the desired properties. Challenging design problems necessitate the representation of a protein by means of a structural ensemble. Thus, Rosetta multi-state design (MSD) protocols have been developed wherein each state represents one protein conformation. Computational demands of MSD protocols are high, because for each of the candidate sequences a costly three-dimensional (3D) model has to be created and assessed for all states. Each of these scores contributes one data point to a complex, design-specific energy landscape. As neural networks (NN) proved well-suited to learn such solution spaces, we integrated one into the framework Rosetta:MSF instead of the so far used genetic algorithm with the aim to reduce computational costs. As its predecessor, Rosetta:MSF:NN administers a set of candidate sequences and their scores and scans sequence space iteratively. During each iteration, the union of all candidate sequences and their Rosetta scores are used to re-train NNs that possess a design-specific architecture. The enormous speed of the NNs allows an extensive assessment of alternative sequences, which are ranked on the scores predicted by the NN. Costly 3D models are computed only for a small fraction of best-scoring sequences; these and the corresponding 3D-based scores replace half of the candidate sequences during each iteration. The analysis of two sets of candidate sequences generated for a specific design problem by means of a genetic algorithm confirmed that the NN predicted 3D-based scores quite well; the Pearson correlation coefficient was at least 0.95. Applying Rosetta:MSF:NN:enzdes to a benchmark consisting of 16 ligand-binding problems showed that this protocol converges ten-times faster than the genetic algorithm and finds sequences with comparable scores.

Suggested Citation

  • Julian Nazet & Elmar Lang & Rainer Merkl, 2021. "Rosetta:MSF:NN: Boosting performance of multi-state computational protein design with a neural network," PLOS ONE, Public Library of Science, vol. 16(8), pages 1-23, August.
  • Handle: RePEc:plo:pone00:0256691
    DOI: 10.1371/journal.pone.0256691
    as

    Download full text from publisher

    File URL: https://journals.plos.org/plosone/article?id=10.1371/journal.pone.0256691
    Download Restriction: no

    File URL: https://journals.plos.org/plosone/article/file?id=10.1371/journal.pone.0256691&type=printable
    Download Restriction: no

    File URL: https://libkey.io/10.1371/journal.pone.0256691?utm_source=ideas
    LibKey link: if access is restricted and if your library uses this service, LibKey will redirect you to where you can use your library subscription to access this item
    ---><---

    References listed on IDEAS

    as
    1. Daniela Röthlisberger & Olga Khersonsky & Andrew M. Wollacott & Lin Jiang & Jason DeChancie & Jamie Betker & Jasmine L. Gallaher & Eric A. Althoff & Alexandre Zanghellini & Orly Dym & Shira Albeck & K, 2008. "Kemp elimination catalysts by computational enzyme design," Nature, Nature, vol. 453(7192), pages 190-195, May.
    2. Elisabeth L Humphris & Tanja Kortemme, 2007. "Design of Multi-Specificity in Protein Interfaces," PLOS Computational Biology, Public Library of Science, vol. 3(8), pages 1-14, August.
    Full references (including those not matched with items on IDEAS)

    Most related items

    These are the items that most often cite the same works as this one and are cited by the same works as this one.
    1. Alexander M Sevy & Tim M Jacobs & James E Crowe Jr. & Jens Meiler, 2015. "Design of Protein Multi-specificity Using an Independent Sequence Search Reduces the Barrier to Low Energy Sequences," PLOS Computational Biology, Public Library of Science, vol. 11(7), pages 1-23, July.
    2. Jordan R Willis & Bryan S Briney & Samuel L DeLuca & James E Crowe Jr & Jens Meiler, 2013. "Human Germline Antibody Gene Segments Encode Polyspecific Antibodies," PLOS Computational Biology, Public Library of Science, vol. 9(4), pages 1-14, April.
    3. Colin A Smith & Tanja Kortemme, 2011. "Predicting the Tolerated Sequences for Proteins and Protein Interfaces Using RosettaBackrub Flexible Backbone Design," PLOS ONE, Public Library of Science, vol. 6(7), pages 1-11, July.
    4. Andrew Leaver-Fay & Ron Jacak & P Benjamin Stranges & Brian Kuhlman, 2011. "A Generic Program for Multistate Protein Design," PLOS ONE, Public Library of Science, vol. 6(7), pages 1-17, July.
    5. Patrick Löffler & Samuel Schmitz & Enrico Hupfeld & Reinhard Sterner & Rainer Merkl, 2017. "Rosetta:MSF: a modular framework for multi-state computational protein design," PLOS Computational Biology, Public Library of Science, vol. 13(6), pages 1-24, June.

    More about this item

    Statistics

    Access and download statistics

    Corrections

    All material on this site has been provided by the respective publishers and authors. You can help correct errors and omissions. When requesting a correction, please mention this item's handle: RePEc:plo:pone00:0256691. See general information about how to correct material in RePEc.

    If you have authored this item and are not yet registered with RePEc, we encourage you to do it here. This allows to link your profile to this item. It also allows you to accept potential citations to this item that we are uncertain about.

    If CitEc recognized a bibliographic reference but did not link an item in RePEc to it, you can help with this form .

    If you know of missing items citing this one, you can help us creating those links by adding the relevant references in the same way as above, for each refering item. If you are a registered author of this item, you may also want to check the "citations" tab in your RePEc Author Service profile, as there may be some citations waiting for confirmation.

    For technical questions regarding this item, or to correct its authors, title, abstract, bibliographic or download information, contact: plosone (email available below). General contact details of provider: https://journals.plos.org/plosone/ .

    Please note that corrections may take a couple of weeks to filter through the various RePEc services.

    IDEAS is a RePEc service. RePEc uses bibliographic data supplied by the respective publishers.