IDEAS home Printed from https://ideas.repec.org/a/nat/nature/v458y2009i7240d10.1038_nature07885.html
   My bibliography  Save this article

Design of protein-interaction specificity gives selective bZIP-binding peptides

Author

Listed:
  • Gevorg Grigoryan

    (77 Massachusetts Avenue, Cambridge, Massachusetts 02139, USA
    Current address: University of Pennsylvania Department of Biochemistry and Biophysics, 422 Curie Blvd, Philadelphia, Pennsylvania 19107, USA.)

  • Aaron W. Reinke

    (77 Massachusetts Avenue, Cambridge, Massachusetts 02139, USA)

  • Amy E. Keating

    (77 Massachusetts Avenue, Cambridge, Massachusetts 02139, USA)

Abstract

Interaction specificity is a required feature of biological networks and a necessary characteristic of protein or small-molecule reagents and therapeutics. The ability to alter or inhibit protein interactions selectively would advance basic and applied molecular science. Assessing or modelling interaction specificity requires treating multiple competing complexes, which presents computational and experimental challenges. Here we present a computational framework for designing protein-interaction specificity and use it to identify specific peptide partners for human basic-region leucine zipper (bZIP) transcription factors. Protein microarrays were used to characterize designed, synthetic ligands for all but one of 20 bZIP families. The bZIP proteins share strong sequence and structural similarities and thus are challenging targets to bind specifically. Nevertheless, many of the designs, including examples that bind the oncoproteins c-Jun, c-Fos and c-Maf (also called JUN, FOS and MAF, respectively), were selective for their targets over all 19 other families. Collectively, the designs exhibit a wide range of interaction profiles and demonstrate that human bZIPs have only sparsely sampled the possible interaction space accessible to them. Our computational method provides a way to systematically analyse trade-offs between stability and specificity and is suitable for use with many types of structure-scoring functions; thus, it may prove broadly useful as a tool for protein design.

Suggested Citation

  • Gevorg Grigoryan & Aaron W. Reinke & Amy E. Keating, 2009. "Design of protein-interaction specificity gives selective bZIP-binding peptides," Nature, Nature, vol. 458(7240), pages 859-864, April.
  • Handle: RePEc:nat:nature:v:458:y:2009:i:7240:d:10.1038_nature07885
    DOI: 10.1038/nature07885
    as

    Download full text from publisher

    File URL: https://www.nature.com/articles/nature07885
    File Function: Abstract
    Download Restriction: Access to the full text of the articles in this series is restricted.

    File URL: https://libkey.io/10.1038/nature07885?utm_source=ideas
    LibKey link: if access is restricted and if your library uses this service, LibKey will redirect you to where you can use your library subscription to access this item
    ---><---

    As the access to this document is restricted, you may want to search for a different version of it.

    Citations

    Citations are extracted by the CitEc Project, subscribe to its RSS feed for this item.
    as


    Cited by:

    1. Aliza B Rubenstein & Manasi A Pethe & Sagar D Khare, 2017. "MFPred: Rapid and accurate prediction of protein-peptide recognition multispecificity using self-consistent mean field theory," PLOS Computational Biology, Public Library of Science, vol. 13(6), pages 1-24, June.
    2. Patrick Löffler & Samuel Schmitz & Enrico Hupfeld & Reinhard Sterner & Rainer Merkl, 2017. "Rosetta:MSF: a modular framework for multi-state computational protein design," PLOS Computational Biology, Public Library of Science, vol. 13(6), pages 1-24, June.
    3. Vladimir Potapov & Jenifer B Kaplan & Amy E Keating, 2015. "Data-Driven Prediction and Design of bZIP Coiled-Coil Interactions," PLOS Computational Biology, Public Library of Science, vol. 11(2), pages 1-28, February.
    4. Hege Beard & Anuradha Cholleti & David Pearlman & Woody Sherman & Kathryn A Loving, 2013. "Applying Physics-Based Scoring to Calculate Free Energies of Binding for Single Amino Acid Mutations in Protein-Protein Complexes," PLOS ONE, Public Library of Science, vol. 8(12), pages 1-1, December.
    5. Alexander M Sevy & Tim M Jacobs & James E Crowe Jr. & Jens Meiler, 2015. "Design of Protein Multi-specificity Using an Independent Sequence Search Reduces the Barrier to Low Energy Sequences," PLOS Computational Biology, Public Library of Science, vol. 11(7), pages 1-23, July.

    More about this item

    Statistics

    Access and download statistics

    Corrections

    All material on this site has been provided by the respective publishers and authors. You can help correct errors and omissions. When requesting a correction, please mention this item's handle: RePEc:nat:nature:v:458:y:2009:i:7240:d:10.1038_nature07885. See general information about how to correct material in RePEc.

    If you have authored this item and are not yet registered with RePEc, we encourage you to do it here. This allows to link your profile to this item. It also allows you to accept potential citations to this item that we are uncertain about.

    We have no bibliographic references for this item. You can help adding them by using this form .

    If you know of missing items citing this one, you can help us creating those links by adding the relevant references in the same way as above, for each refering item. If you are a registered author of this item, you may also want to check the "citations" tab in your RePEc Author Service profile, as there may be some citations waiting for confirmation.

    For technical questions regarding this item, or to correct its authors, title, abstract, bibliographic or download information, contact: Sonal Shukla or Springer Nature Abstracting and Indexing (email available below). General contact details of provider: http://www.nature.com .

    Please note that corrections may take a couple of weeks to filter through the various RePEc services.

    IDEAS is a RePEc service. RePEc uses bibliographic data supplied by the respective publishers.