IDEAS home Printed from https://ideas.repec.org/a/plo/pcbi00/1005092.html
   My bibliography  Save this article

Separating Timing, Movement Conditions and Individual Differences in the Analysis of Human Movement

Author

Listed:
  • Lars Lau Raket
  • Britta Grimme
  • Gregor Schöner
  • Christian Igel
  • Bo Markussen

Abstract

A central task in the analysis of human movement behavior is to determine systematic patterns and differences across experimental conditions, participants and repetitions. This is possible because human movement is highly regular, being constrained by invariance principles. Movement timing and movement path, in particular, are linked through scaling laws. Separating variations of movement timing from the spatial variations of movements is a well-known challenge that is addressed in current approaches only through forms of preprocessing that bias analysis. Here we propose a novel nonlinear mixed-effects model for analyzing temporally continuous signals that contain systematic effects in both timing and path. Identifiability issues of path relative to timing are overcome by using maximum likelihood estimation in which the most likely separation of space and time is chosen given the variation found in data. The model is applied to analyze experimental data of human arm movements in which participants move a hand-held object to a target location while avoiding an obstacle. The model is used to classify movement data according to participant. Comparison to alternative approaches establishes nonlinear mixed-effects models as viable alternatives to conventional analysis frameworks. The model is then combined with a novel factor-analysis model that estimates the low-dimensional subspace within which movements vary when the task demands vary. Our framework enables us to visualize different dimensions of movement variation and to test hypotheses about the effect of obstacle placement and height on the movement path. We demonstrate that the approach can be used to uncover new properties of human movement.Author Summary: When you move a cup to a new location on a table, the movement of lifting, transporting, and setting down the cup appears to be completely automatic. Although the hand could take continuously many different paths and move on any temporal trajectory, real movements are highly regular and reproducible. From repetition to repetition movements vary, and the pattern of variance reflects movement conditions and movement timing. If another person performs the same task, the movement will be similar. When we look more closely, however, there are systematic individual differences. Some people will overcompensate when avoiding an obstacle and some people will systematically move slower than others. When we want to understand human movement, all these aspects are important. We want to know which parts of a movement are common across people and we want to quantify the different types of variability. Thus, the models we use to analyze movement data should contain all the mentioned effects. In this work, we developed a framework for statistical analysis of movement data that respects these structures of movements. We showed how this framework modeled the individual characteristics of participants better than other state-of-the-art modeling approaches. We combined the timing-and-path-separating model with a novel factor analysis model for analyzing the effect of obstacles on spatial movement paths. This combination allowed for an unprecedented ability to quantify and display different sources of variation in the data. We analyzed data from a designed experiment of arm movements under various obstacle avoidance conditions. Using the proposed statistical models, we documented three findings: a linearly amplified deviation in mean path related to increase in obstacle height; a consistent asymmetric pattern of variation along the movement path related to obstacle placement; and the existence of obstacle-distance invariant focal points where mean trajectories intersect in the frontal and vertical planes.

Suggested Citation

  • Lars Lau Raket & Britta Grimme & Gregor Schöner & Christian Igel & Bo Markussen, 2016. "Separating Timing, Movement Conditions and Individual Differences in the Analysis of Human Movement," PLOS Computational Biology, Public Library of Science, vol. 12(9), pages 1-27, September.
  • Handle: RePEc:plo:pcbi00:1005092
    DOI: 10.1371/journal.pcbi.1005092
    as

    Download full text from publisher

    File URL: https://journals.plos.org/ploscompbiol/article?id=10.1371/journal.pcbi.1005092
    Download Restriction: no

    File URL: https://journals.plos.org/ploscompbiol/article/file?id=10.1371/journal.pcbi.1005092&type=printable
    Download Restriction: no

    File URL: https://libkey.io/10.1371/journal.pcbi.1005092?utm_source=ideas
    LibKey link: if access is restricted and if your library uses this service, LibKey will redirect you to where you can use your library subscription to access this item
    ---><---

    References listed on IDEAS

    as
    1. Tucker, J. Derek & Wu, Wei & Srivastava, Anuj, 2013. "Generative models for functional data using phase and amplitude separation," Computational Statistics & Data Analysis, Elsevier, vol. 61(C), pages 50-66.
    2. Ravi Varadhan & Christophe Roland, 2008. "Simple and Globally Convergent Methods for Accelerating the Convergence of Any EM Algorithm," Scandinavian Journal of Statistics, Danish Society for Theoretical Statistics;Finnish Statistical Society;Norwegian Statistical Association;Swedish Statistical Association, vol. 35(2), pages 335-353, June.
    3. Dimeglio, Chloé & Gallón, Santiago & Loubes, Jean-Michel & Maza, Elie, 2014. "A robust algorithm for template curve estimation based on manifold embedding," Computational Statistics & Data Analysis, Elsevier, vol. 70(C), pages 373-386.
    4. Daniel Gervini & Theo Gasser, 2005. "Nonparametric maximum likelihood estimation of the structural mean of a sample of curves," Biometrika, Biometrika Trust, vol. 92(4), pages 801-820, December.
    Full references (including those not matched with items on IDEAS)

    Citations

    Citations are extracted by the CitEc Project, subscribe to its RSS feed for this item.
    as


    Cited by:

    1. Shi, Jian Qing, 2018. "How do statisticians analyse big data—Our story," Statistics & Probability Letters, Elsevier, vol. 136(C), pages 130-133.

    Most related items

    These are the items that most often cite the same works as this one and are cited by the same works as this one.
    1. Jason Cleveland & Wei Wu & Anuj Srivastava, 2016. "Norm-preserving constraint in the Fisher--Rao registration and its application in signal estimation," Journal of Nonparametric Statistics, Taylor & Francis Journals, vol. 28(2), pages 338-359, June.
    2. Niels Lundtorp Olsen & Bo Markussen & Lars Lau Raket, 2018. "Simultaneous inference for misaligned multivariate functional data," Journal of the Royal Statistical Society Series C, Royal Statistical Society, vol. 67(5), pages 1147-1176, November.
    3. Maire, Florian & Moulines, Eric & Lefebvre, Sidonie, 2017. "Online EM for functional data," Computational Statistics & Data Analysis, Elsevier, vol. 111(C), pages 27-47.
    4. Greg Lewis & Bora Ozaltun & Georgios Zervas, 2021. "Maximum Likelihood Estimation of Differentiated Products Demand Systems," Papers 2111.12397, arXiv.org.
    5. Jurgen A. Doornik, 2018. "Accelerated Estimation of Switching Algorithms: The Cointegrated VAR Model and Other Applications," Scandinavian Journal of Statistics, Danish Society for Theoretical Statistics;Finnish Statistical Society;Norwegian Statistical Association;Swedish Statistical Association, vol. 45(2), pages 283-300, June.
    6. Yue, Chen & Chen, Shaojie & Sair, Haris I. & Airan, Raag & Caffo, Brian S., 2015. "Estimating a graphical intra-class correlation coefficient (GICC) using multivariate probit-linear mixed models," Computational Statistics & Data Analysis, Elsevier, vol. 89(C), pages 126-133.
    7. Brett Hollenbeck & Kosuke Uetake, 2021. "Taxation and market power in the legal marijuana industry," RAND Journal of Economics, RAND Corporation, vol. 52(3), pages 559-595, September.
    8. Zhuo Qu & Wenlin Dai & Marc G. Genton, 2021. "Robust functional multivariate analysis of variance with environmental applications," Environmetrics, John Wiley & Sons, Ltd., vol. 32(1), February.
    9. Fournel, Jean-François, 2023. "Electric Vehicle Subsidies: Cost-Effectiveness and Emission Reductions," TSE Working Papers 23-1465, Toulouse School of Economics (TSE).
    10. Varadhan, Ravi & Gilbert, Paul, 2009. "BB: An R Package for Solving a Large System of Nonlinear Equations and for Optimizing a High-Dimensional Nonlinear Objective Function," Journal of Statistical Software, Foundation for Open Access Statistics, vol. 32(i04).
    11. Slaets, Leen & Claeskens, Gerda & Silverman, Bernard W., 2013. "Warping Functional Data in R and C via a Bayesian Multiresolution Approach," Journal of Statistical Software, Foundation for Open Access Statistics, vol. 55(i03).
    12. FUKASAWA Takeshi & OHASHI Hiroshi, 2023. "Long-run Effect of a Horizontal Merger and Its Remedial Standards," Discussion papers 23001, Research Institute of Economy, Trade and Industry (RIETI).
    13. Bulté, Matthieu & Sørensen, Helle, 2024. "Medoid splits for efficient random forests in metric spaces," Computational Statistics & Data Analysis, Elsevier, vol. 198(C).
    14. McLachlan, Geoff & Lee, Sharon X, 2013. "EMMIXuskew: An R Package for Fitting Mixtures of Multivariate Skew t Distributions via the EM Algorithm," Journal of Statistical Software, Foundation for Open Access Statistics, vol. 55(i12).
    15. Pál, László & Sándor, Zsolt, 2023. "Comparing procedures for estimating random coefficient logit demand models with a special focus on obtaining global optima," International Journal of Industrial Organization, Elsevier, vol. 88(C).
    16. Chun Yin Lee & Kin Yau Wong & Kwok Fai Lam & Dipankar Bandyopadhyay, 2023. "A semiparametric joint model for cluster size and subunit‐specific interval‐censored outcomes," Biometrics, The International Biometric Society, vol. 79(3), pages 2010-2022, September.
    17. Boudaoud, S. & Rix, H. & Meste, O., 2010. "Core Shape modelling of a set of curves," Computational Statistics & Data Analysis, Elsevier, vol. 54(2), pages 308-325, February.
    18. Tian, Guo-Liang & Tang, Man-Lai & Liu, Chunling, 2012. "Accelerating the quadratic lower-bound algorithm via optimizing the shrinkage parameter," Computational Statistics & Data Analysis, Elsevier, vol. 56(2), pages 255-265.
    19. Dennis Leung & Wenguang Sun, 2022. "ZAP: Z$$ Z $$‐value adaptive procedures for false discovery rate control with side information," Journal of the Royal Statistical Society Series B, Royal Statistical Society, vol. 84(5), pages 1886-1946, November.
    20. A. K. S. Alshabani & I. L. Dryden & C. D. Litton & J. Richardson, 2007. "Bayesian analysis of human movement curves," Journal of the Royal Statistical Society Series C, Royal Statistical Society, vol. 56(4), pages 415-428, August.

    More about this item

    Statistics

    Access and download statistics

    Corrections

    All material on this site has been provided by the respective publishers and authors. You can help correct errors and omissions. When requesting a correction, please mention this item's handle: RePEc:plo:pcbi00:1005092. See general information about how to correct material in RePEc.

    If you have authored this item and are not yet registered with RePEc, we encourage you to do it here. This allows to link your profile to this item. It also allows you to accept potential citations to this item that we are uncertain about.

    If CitEc recognized a bibliographic reference but did not link an item in RePEc to it, you can help with this form .

    If you know of missing items citing this one, you can help us creating those links by adding the relevant references in the same way as above, for each refering item. If you are a registered author of this item, you may also want to check the "citations" tab in your RePEc Author Service profile, as there may be some citations waiting for confirmation.

    For technical questions regarding this item, or to correct its authors, title, abstract, bibliographic or download information, contact: ploscompbiol (email available below). General contact details of provider: https://journals.plos.org/ploscompbiol/ .

    Please note that corrections may take a couple of weeks to filter through the various RePEc services.

    IDEAS is a RePEc service. RePEc uses bibliographic data supplied by the respective publishers.