IDEAS home Printed from https://ideas.repec.org/a/plo/pcbi00/1004654.html
   My bibliography  Save this article

Measuring Integrated Information from the Decoding Perspective

Author

Listed:
  • Masafumi Oizumi
  • Shun-ichi Amari
  • Toru Yanagawa
  • Naotaka Fujii
  • Naotsugu Tsuchiya

Abstract

Accumulating evidence indicates that the capacity to integrate information in the brain is a prerequisite for consciousness. Integrated Information Theory (IIT) of consciousness provides a mathematical approach to quantifying the information integrated in a system, called integrated information, Φ. Integrated information is defined theoretically as the amount of information a system generates as a whole, above and beyond the amount of information its parts independently generate. IIT predicts that the amount of integrated information in the brain should reflect levels of consciousness. Empirical evaluation of this theory requires computing integrated information from neural data acquired from experiments, although difficulties with using the original measure Φ precludes such computations. Although some practical measures have been previously proposed, we found that these measures fail to satisfy the theoretical requirements as a measure of integrated information. Measures of integrated information should satisfy the lower and upper bounds as follows: The lower bound of integrated information should be 0 and is equal to 0 when the system does not generate information (no information) or when the system comprises independent parts (no integration). The upper bound of integrated information is the amount of information generated by the whole system. Here we derive the novel practical measure Φ* by introducing a concept of mismatched decoding developed from information theory. We show that Φ* is properly bounded from below and above, as required, as a measure of integrated information. We derive the analytical expression of Φ* under the Gaussian assumption, which makes it readily applicable to experimental data. Our novel measure Φ* can generally be used as a measure of integrated information in research on consciousness, and also as a tool for network analysis on diverse areas of biology.Author Summary: Integrated Information Theory (IIT) of consciousness attracts scientists who investigate consciousness owing to its explanatory and predictive powers for understanding the neural properties of consciousness. IIT predicts that the levels of consciousness are related to the quantity of information integrated in the brain, which is called integrated information Φ. Integrated information measures excess information generated by a system as a whole above and beyond the amount of information independently generated by its parts. Although IIT predictions are indirectly supported by numerous experiments, validation is required through quantifying integrated information directly from experimental neural data. Practical difficulties account for the absence of direct, quantitative support. To resolve these difficulties, several practical measures of integrated information have been proposed. However, we found that these measures do not satisfy the theoretical requirements of integrated information: First, integrated information should not be below 0; and second, integrated information should not exceed the quantity of information generated by the whole system. Here, we propose a novel practical measure of integrated information, designated as Φ* that satisfies these theoretical requirements by introducing the concept of mismatched decoding developed from information theory. Φ* creates the possibility of empirical and quantitative validations of IIT to gain novel insights into the neural basis of consciousness.

Suggested Citation

  • Masafumi Oizumi & Shun-ichi Amari & Toru Yanagawa & Naotaka Fujii & Naotsugu Tsuchiya, 2016. "Measuring Integrated Information from the Decoding Perspective," PLOS Computational Biology, Public Library of Science, vol. 12(1), pages 1-18, January.
  • Handle: RePEc:plo:pcbi00:1004654
    DOI: 10.1371/journal.pcbi.1004654
    as

    Download full text from publisher

    File URL: https://journals.plos.org/ploscompbiol/article?id=10.1371/journal.pcbi.1004654
    Download Restriction: no

    File URL: https://journals.plos.org/ploscompbiol/article/file?id=10.1371/journal.pcbi.1004654&type=printable
    Download Restriction: no

    File URL: https://libkey.io/10.1371/journal.pcbi.1004654?utm_source=ideas
    LibKey link: if access is restricted and if your library uses this service, LibKey will redirect you to where you can use your library subscription to access this item
    ---><---

    References listed on IDEAS

    as
    1. Masafumi Oizumi & Larissa Albantakis & Giulio Tononi, 2014. "From the Phenomenology to the Mechanisms of Consciousness: Integrated Information Theory 3.0," PLOS Computational Biology, Public Library of Science, vol. 10(5), pages 1-25, May.
    2. Jeffrey A Edlund & Nicolas Chaumont & Arend Hintze & Christof Koch & Giulio Tononi & Christoph Adami, 2011. "Integrated Information Increases with Fitness in the Evolution of Animats," PLOS Computational Biology, Public Library of Science, vol. 7(10), pages 1-13, October.
    3. Adam B Barrett & Anil K Seth, 2011. "Practical Measures of Integrated Information for Time-Series Data," PLOS Computational Biology, Public Library of Science, vol. 7(1), pages 1-18, January.
    4. David Balduzzi & Giulio Tononi, 2009. "Qualia: The Geometry of Integrated Information," PLOS Computational Biology, Public Library of Science, vol. 5(8), pages 1-24, August.
    Full references (including those not matched with items on IDEAS)

    Citations

    Citations are extracted by the CitEc Project, subscribe to its RSS feed for this item.
    as


    Cited by:

    1. Takayuki Niizato & Kotaro Sakamoto & Yoh-ichi Mototake & Hisashi Murakami & Takenori Tomaru & Tomotaro Hoshika & Toshiki Fukushima, 2020. "Finding continuity and discontinuity in fish schools via integrated information theory," PLOS ONE, Public Library of Science, vol. 15(2), pages 1-29, February.
    2. Max Tegmark, 2016. "Improved Measures of Integrated Information," PLOS Computational Biology, Public Library of Science, vol. 12(11), pages 1-34, November.
    3. Daniel Toker & Friedrich T Sommer, 2019. "Information integration in large brain networks," PLOS Computational Biology, Public Library of Science, vol. 15(2), pages 1-26, February.
    4. David Engel & Thomas W Malone, 2018. "Integrated information as a metric for group interaction," PLOS ONE, Public Library of Science, vol. 13(10), pages 1-19, October.
    5. Brandon R. Munn & Eli J. Müller & Vicente Medel & Sharon L. Naismith & Joseph T. Lizier & Robert D. Sanders & James M. Shine, 2023. "Neuronal connected burst cascades bridge macroscale adaptive signatures across arousal states," Nature Communications, Nature, vol. 14(1), pages 1-17, December.
    6. Antonio J. Ibáñez-Molina & Sergio Iglesias-Parro, 2018. "A Comparison between Theoretical and Experimental Measures of Consciousness as Integrated Information in an Anatomically Based Network of Coupled Oscillators," Complexity, Hindawi, vol. 2018, pages 1-8, April.

    Most related items

    These are the items that most often cite the same works as this one and are cited by the same works as this one.
    1. David Engel & Thomas W Malone, 2018. "Integrated information as a metric for group interaction," PLOS ONE, Public Library of Science, vol. 13(10), pages 1-19, October.
    2. Masafumi Oizumi & Larissa Albantakis & Giulio Tononi, 2014. "From the Phenomenology to the Mechanisms of Consciousness: Integrated Information Theory 3.0," PLOS Computational Biology, Public Library of Science, vol. 10(5), pages 1-25, May.
    3. Takayuki Niizato & Kotaro Sakamoto & Yoh-ichi Mototake & Hisashi Murakami & Takenori Tomaru & Tomotaro Hoshika & Toshiki Fukushima, 2020. "Finding continuity and discontinuity in fish schools via integrated information theory," PLOS ONE, Public Library of Science, vol. 15(2), pages 1-29, February.
    4. Max Tegmark, 2016. "Improved Measures of Integrated Information," PLOS Computational Biology, Public Library of Science, vol. 12(11), pages 1-34, November.
    5. Antonio J. Ibáñez-Molina & Sergio Iglesias-Parro, 2018. "A Comparison between Theoretical and Experimental Measures of Consciousness as Integrated Information in an Anatomically Based Network of Coupled Oscillators," Complexity, Hindawi, vol. 2018, pages 1-8, April.
    6. Daniel Toker & Friedrich T Sommer, 2019. "Information integration in large brain networks," PLOS Computational Biology, Public Library of Science, vol. 15(2), pages 1-26, February.
    7. Werner, Gerhard, 2013. "Consciousness viewed in the framework of brain phase space dynamics, criticality, and the Renormalization Group," Chaos, Solitons & Fractals, Elsevier, vol. 55(C), pages 3-12.
    8. Peter Gordon Roetzel, 2019. "Information overload in the information age: a review of the literature from business administration, business psychology, and related disciplines with a bibliometric approach and framework developmen," Business Research, Springer;German Academic Association for Business Research, vol. 12(2), pages 479-522, December.
    9. Adam B Barrett & Anil K Seth, 2011. "Practical Measures of Integrated Information for Time-Series Data," PLOS Computational Biology, Public Library of Science, vol. 7(1), pages 1-18, January.
    10. Adam B Barrett & Michael Murphy & Marie-Aurélie Bruno & Quentin Noirhomme & Mélanie Boly & Steven Laureys & Anil K Seth, 2012. "Granger Causality Analysis of Steady-State Electroencephalographic Signals during Propofol-Induced Anaesthesia," PLOS ONE, Public Library of Science, vol. 7(1), pages 1-12, January.
    11. repec:zna:indecs:v:19:y:2021:i:4:p:31-41 is not listed on IDEAS
    12. Soumya Banerjee, 2021. "Emergent rules of computation in the Universe lead to life and consciousness: a computational framework for consciousness," Interdisciplinary Description of Complex Systems - scientific journal, Croatian Interdisciplinary Society Provider Homepage: http://indecs.eu, vol. 19(1), pages 31-41.
    13. Valmir C. Barbosa, 2017. "Information Integration from Distributed Threshold-Based Interactions," Complexity, Hindawi, vol. 2017, pages 1-14, January.
    14. Jeffrey A Edlund & Nicolas Chaumont & Arend Hintze & Christof Koch & Giulio Tononi & Christoph Adami, 2011. "Integrated Information Increases with Fitness in the Evolution of Animats," PLOS Computational Biology, Public Library of Science, vol. 7(10), pages 1-13, October.
    15. Francisco J Esteban & Javier A Galadí & José A Langa & José R Portillo & Fernando Soler-Toscano, 2018. "Informational structures: A dynamical system approach for integrated information," PLOS Computational Biology, Public Library of Science, vol. 14(9), pages 1-33, September.
    16. L. Ingber, 2011. "Computational algorithms derived from multiple scales of neocortical processing," Lester Ingber Papers 11ca, Lester Ingber.
    17. L. Ingber, 2012. "Columnar EEG magnetic influences on molecular development of short-term memory," Lester Ingber Papers 12ce, Lester Ingber.

    More about this item

    Statistics

    Access and download statistics

    Corrections

    All material on this site has been provided by the respective publishers and authors. You can help correct errors and omissions. When requesting a correction, please mention this item's handle: RePEc:plo:pcbi00:1004654. See general information about how to correct material in RePEc.

    If you have authored this item and are not yet registered with RePEc, we encourage you to do it here. This allows to link your profile to this item. It also allows you to accept potential citations to this item that we are uncertain about.

    If CitEc recognized a bibliographic reference but did not link an item in RePEc to it, you can help with this form .

    If you know of missing items citing this one, you can help us creating those links by adding the relevant references in the same way as above, for each refering item. If you are a registered author of this item, you may also want to check the "citations" tab in your RePEc Author Service profile, as there may be some citations waiting for confirmation.

    For technical questions regarding this item, or to correct its authors, title, abstract, bibliographic or download information, contact: ploscompbiol (email available below). General contact details of provider: https://journals.plos.org/ploscompbiol/ .

    Please note that corrections may take a couple of weeks to filter through the various RePEc services.

    IDEAS is a RePEc service. RePEc uses bibliographic data supplied by the respective publishers.