IDEAS home Printed from https://ideas.repec.org/a/plo/pcbi00/1004503.html
   My bibliography  Save this article

VDJtools: Unifying Post-analysis of T Cell Receptor Repertoires

Author

Listed:
  • Mikhail Shugay
  • Dmitriy V Bagaev
  • Maria A Turchaninova
  • Dmitriy A Bolotin
  • Olga V Britanova
  • Ekaterina V Putintseva
  • Mikhail V Pogorelyy
  • Vadim I Nazarov
  • Ivan V Zvyagin
  • Vitalina I Kirgizova
  • Kirill I Kirgizov
  • Elena V Skorobogatova
  • Dmitriy M Chudakov

Abstract

Despite the growing number of immune repertoire sequencing studies, the field still lacks software for analysis and comprehension of this high-dimensional data. Here we report VDJtools, a complementary software suite that solves a wide range of T cell receptor (TCR) repertoires post-analysis tasks, provides a detailed tabular output and publication-ready graphics, and is built on top of a flexible API. Using TCR datasets for a large cohort of unrelated healthy donors, twins, and multiple sclerosis patients we demonstrate that VDJtools greatly facilitates the analysis and leads to sound biological conclusions. VDJtools software and documentation are available at https://github.com/mikessh/vdjtools.Author Summary: High-throughput profiling of T- and B-cell antigen receptor repertoires promises great advances in our understanding of the mechanisms underlying adaptive immune system function, treatment of autoimmune and infectious diseases, and development of novel approaches in cancer immunotherapy. A number of recently developed software tools aim at processing immune repertoire data by mapping Variable (V), Diversity (D) and Joining (J) antigen receptor segments to sequencing reads and assembling T- and B-cell clonotypes. Nevertheless, there still exists a major gap in common methods of data post-analysis in the field: there is no standardized data format so far, and most of data comparative analysis is carried out using a variety of in-house scripts. Here we present VDJtools, a software framework that can analyze output of most commonly used TCR repertoire processing tools and allows applying a diverse set of post-analysis strategies. The main aims of our framework are: To ensure consistency of post-analysis methods and reproducibility of obtained results; to save the time of bioinformaticians analyzing TCR repertoire data by providing comprehensive tabular output and open-source API; and to provide a simple enough command line tool so that immunologists and biologists with little computational background could use it to generate publication-ready results.

Suggested Citation

  • Mikhail Shugay & Dmitriy V Bagaev & Maria A Turchaninova & Dmitriy A Bolotin & Olga V Britanova & Ekaterina V Putintseva & Mikhail V Pogorelyy & Vadim I Nazarov & Ivan V Zvyagin & Vitalina I Kirgizova, 2015. "VDJtools: Unifying Post-analysis of T Cell Receptor Repertoires," PLOS Computational Biology, Public Library of Science, vol. 11(11), pages 1-16, November.
  • Handle: RePEc:plo:pcbi00:1004503
    DOI: 10.1371/journal.pcbi.1004503
    as

    Download full text from publisher

    File URL: https://journals.plos.org/ploscompbiol/article?id=10.1371/journal.pcbi.1004503
    Download Restriction: no

    File URL: https://journals.plos.org/ploscompbiol/article/file?id=10.1371/journal.pcbi.1004503&type=printable
    Download Restriction: no

    File URL: https://libkey.io/10.1371/journal.pcbi.1004503?utm_source=ideas
    LibKey link: if access is restricted and if your library uses this service, LibKey will redirect you to where you can use your library subscription to access this item
    ---><---

    References listed on IDEAS

    as
    1. Yongqiang Feng & Joris van der Veeken & Mikhail Shugay & Ekaterina V. Putintseva & Hatice U. Osmanbeyoglu & Stanislav Dikiy & Beatrice E. Hoyos & Bruno Moltedo & Saskia Hemmers & Piper Treuting & Chri, 2015. "A mechanism for expansion of regulatory T-cell repertoire and its role in self-tolerance," Nature, Nature, vol. 528(7580), pages 132-136, December.
    Full references (including those not matched with items on IDEAS)

    Citations

    Citations are extracted by the CitEc Project, subscribe to its RSS feed for this item.
    as


    Cited by:

    1. Mike B. Barnkob & Yale S. Michaels & Violaine André & Philip S. Macklin & Uzi Gileadi & Salvatore Valvo & Margarida Rei & Corinna Kulicke & Ji-Li Chen & Vitul Jain & Victoria K. Woodcock & Huw Colin-Y, 2024. "Semaphorin 3A causes immune suppression by inducing cytoskeletal paralysis in tumour-specific CD8+ T cells," Nature Communications, Nature, vol. 15(1), pages 1-18, December.
    2. Song Li & Wenbin Yu & Fei Xie & Haitao Luo & Zhimin Liu & Weiwei Lv & Duanbo Shi & Dexin Yu & Peng Gao & Cheng Chen & Meng Wei & Wenhao Zhou & Jiaqian Wang & Zhikun Zhao & Xin Dai & Qian Xu & Xue Zhan, 2023. "Neoadjuvant therapy with immune checkpoint blockade, antiangiogenesis, and chemotherapy for locally advanced gastric cancer," Nature Communications, Nature, vol. 14(1), pages 1-16, December.
    3. Michael D. Keller & Stefan A. Schattgen & Shanmuganathan Chandrakasan & E. Kaitlynn Allen & Mariah A. Jensen-Wachspress & Christopher A. Lazarski & Muna Qayed & Haili Lang & Patrick J. Hanley & Jay Ta, 2024. "Secondary bone marrow graft loss after third-party virus-specific T cell infusion: Case report of a rare complication," Nature Communications, Nature, vol. 15(1), pages 1-9, December.
    4. Juan Blanco-Heredia & Carla Anjos Souza & Juan L. Trincado & Maria Gonzalez-Cao & Samuel Gonçalves-Ribeiro & Sara Ruiz Gil & Dmytro Pravdyvets & Samandhy Cedeño & Maurizio Callari & Antonio Marra & An, 2024. "Converging and evolving immuno-genomic routes toward immune escape in breast cancer," Nature Communications, Nature, vol. 15(1), pages 1-18, December.
    5. Yu Guo & Guangshun Zhang & Qi Yang & Xiaowei Xie & Yang Lu & Xuelian Cheng & Hui Wang & Jingxi Liang & Jielin Tang & Yuxin Gao & Hang Shang & Jun Dai & Yongxia Shi & Jiaxi Zhou & Jun Zhou & Hangtian G, 2023. "Discovery and characterization of potent pan-variant SARS-CoV-2 neutralizing antibodies from individuals with Omicron breakthrough infection," Nature Communications, Nature, vol. 14(1), pages 1-16, December.
    6. Jeremy J. Ratiu & William E. Barclay & Elliot Lin & Qun Wang & Sebastian Wellford & Naren Mehta & Melissa J. Harnois & Devon DiPalma & Sumedha Roy & Alejandra V. Contreras & Mari L. Shinohara & David , 2022. "Loss of Zfp335 triggers cGAS/STING-dependent apoptosis of post-β selection thymocytes," Nature Communications, Nature, vol. 13(1), pages 1-18, December.
    7. Jani Huuhtanen & Dipabarna Bhattacharya & Tapio Lönnberg & Matti Kankainen & Cassandra Kerr & Jason Theodoropoulos & Hanna Rajala & Carmelo Gurnari & Tiina Kasanen & Till Braun & Antonella Teramo & Re, 2022. "Single-cell characterization of leukemic and non-leukemic immune repertoires in CD8+ T-cell large granular lymphocytic leukemia," Nature Communications, Nature, vol. 13(1), pages 1-16, December.
    8. Zhongchao Li & Jing Liu & Bo Zhang & Jinbo Yue & Xuetao Shi & Kai Cui & Zhaogang Liu & Zhibin Chang & Zhicheng Sun & Mingming Li & Yue Yang & Zhao Ma & Lei Li & Chengsheng Zhang & Pengfei Sun & Jingta, 2024. "Neoadjuvant tislelizumab plus stereotactic body radiotherapy and adjuvant tislelizumab in early-stage resectable hepatocellular carcinoma: the Notable-HCC phase 1b trial," Nature Communications, Nature, vol. 15(1), pages 1-14, December.
    9. Antonella Teramo & Andrea Binatti & Elena Ciabatti & Gianluca Schiavoni & Giulia Tarrini & Gregorio Barilà & Giulia Calabretto & Cristina Vicenzetto & Vanessa Rebecca Gasparini & Monica Facco & Iacopo, 2022. "Defining TCRγδ lymphoproliferative disorders by combined immunophenotypic and molecular evaluation," Nature Communications, Nature, vol. 13(1), pages 1-11, December.
    10. Meng Xu & Taku Ito-Kureha & Hyun-Seo Kang & Aleksandar Chernev & Timsse Raj & Kai P. Hoefig & Christine Hohn & Florian Giesert & Yinhu Wang & Wenliang Pan & Natalia Ziętara & Tobias Straub & Regina Fe, 2024. "The thymocyte-specific RNA-binding protein Arpp21 provides TCR repertoire diversity by binding to the 3’-UTR and promoting Rag1 mRNA expression," Nature Communications, Nature, vol. 15(1), pages 1-20, December.
    11. Martin Lauss & Bengt Phung & Troels Holz Borch & Katja Harbst & Kamila Kaminska & Anna Ebbesson & Ingrid Hedenfalk & Joan Yuan & Kari Nielsen & Christian Ingvar & Ana Carneiro & Karolin Isaksson & Kri, 2024. "Molecular patterns of resistance to immune checkpoint blockade in melanoma," Nature Communications, Nature, vol. 15(1), pages 1-14, December.
    12. Kerry J. Laing & Werner J. D. Ouwendijk & Victoria L. Campbell & Christopher L. McClurkan & Shahin Mortazavi & Michael Elder Waters & Maxwell P. Krist & Richard Tu & Nhi Nguyen & Krithi Basu & Congron, 2022. "Selective retention of virus-specific tissue-resident T cells in healed skin after recovery from herpes zoster," Nature Communications, Nature, vol. 13(1), pages 1-13, December.
    13. Jani Huuhtanen & Liang Chen & Emmi Jokinen & Henna Kasanen & Tapio Lönnberg & Anna Kreutzman & Katriina Peltola & Micaela Hernberg & Chunlin Wang & Cassian Yee & Harri Lähdesmäki & Mark M. Davis & Sat, 2022. "Evolution and modulation of antigen-specific T cell responses in melanoma patients," Nature Communications, Nature, vol. 13(1), pages 1-14, December.
    14. Thillai V. Sekar & Eslam A. Elghonaimy & Katy L. Swancutt & Sebastian Diegeler & Isaac Gonzalez & Cassandra Hamilton & Peter Q. Leung & Jens Meiler & Cristina E. Martina & Michael Whitney & Todd A. Ag, 2023. "Simultaneous selection of nanobodies for accessible epitopes on immune cells in the tumor microenvironment," Nature Communications, Nature, vol. 14(1), pages 1-20, December.

    Most related items

    These are the items that most often cite the same works as this one and are cited by the same works as this one.

      More about this item

      Statistics

      Access and download statistics

      Corrections

      All material on this site has been provided by the respective publishers and authors. You can help correct errors and omissions. When requesting a correction, please mention this item's handle: RePEc:plo:pcbi00:1004503. See general information about how to correct material in RePEc.

      If you have authored this item and are not yet registered with RePEc, we encourage you to do it here. This allows to link your profile to this item. It also allows you to accept potential citations to this item that we are uncertain about.

      If CitEc recognized a bibliographic reference but did not link an item in RePEc to it, you can help with this form .

      If you know of missing items citing this one, you can help us creating those links by adding the relevant references in the same way as above, for each refering item. If you are a registered author of this item, you may also want to check the "citations" tab in your RePEc Author Service profile, as there may be some citations waiting for confirmation.

      For technical questions regarding this item, or to correct its authors, title, abstract, bibliographic or download information, contact: ploscompbiol (email available below). General contact details of provider: https://journals.plos.org/ploscompbiol/ .

      Please note that corrections may take a couple of weeks to filter through the various RePEc services.

      IDEAS is a RePEc service. RePEc uses bibliographic data supplied by the respective publishers.