IDEAS home Printed from https://ideas.repec.org/a/plo/pcbi00/1003745.html
   My bibliography  Save this article

Hydrophobin Film Structure for HFBI and HFBII and Mechanism for Accelerated Film Formation

Author

Listed:
  • Aniket Magarkar
  • Nawel Mele
  • Noha Abdel-Rahman
  • Sarah Butcher
  • Mika Torkkeli
  • Ritva Serimaa
  • Arja Paananen
  • Markus Linder
  • Alex Bunker

Abstract

Hydrophobins represent an important group of proteins from both a biological and nanotechnological standpoint. They are the means through which filamentous fungi affect their environment to promote growth, and their properties at interfaces have resulted in numerous applications. In our study we have combined protein docking, molecular dynamics simulation, and electron cryo-microscopy to gain atomistic level insight into the surface structure of films composed of two class II hydrophobins: HFBI and HFBII produced by Trichoderma reesei. Together our results suggest a unit cell composed of six proteins; however, our computational results suggest P6 symmetry, while our experimental results show P3 symmetry with a unit cell size of 56 Å. Our computational results indicate the possibility of an alternate ordering with a three protein unit cell with P3 symmetry and a smaller unit cell size, and we have used a Monte Carlo simulation of a spin model representing the hydrophobin film to show how this alternate metastable structure may play a role in increasing the rate of surface coverage by hydrophobin films, possibly indicating a mechanism of more general significance to both biology and nanotechnology.Author Summary: Filamentous fungi release a specific type of protein, belonging to a protein family known as “hydrophobins” into their environment to control interfaces in a fashion that promotes growth. Such protein coatings are the mechanism that allows for the mycelia to grow out of the water and into the air. When these hydrophobins form films at the air-water interface and on the surface of solid objects immersed in water, they impart properties to those surfaces that has led to their use in a wide range of industrial applications. Of particular interest is the properties they impart to air liquid interfaces, and as a mechanism to bring protective materials to coat nanoparticles in nanotechnology applications. A more detailed knowledge of the structure of these surfaces will allow for augmentation of their function that is possible through genetic engineering of the hydrophobins themselves. In this study we have combined computational and experimental methods to develop atomistic level insight into the structure of this surface for two important hydrophobins: HFBI and HFBII of Trichoderma reesei. In addition to insight into the surface structure, we have uncovered an intriguing possible new mechanism for film formation, which may explain some of the striking properties of hydrophobin films, and could be extended to a more general mechanism.

Suggested Citation

  • Aniket Magarkar & Nawel Mele & Noha Abdel-Rahman & Sarah Butcher & Mika Torkkeli & Ritva Serimaa & Arja Paananen & Markus Linder & Alex Bunker, 2014. "Hydrophobin Film Structure for HFBI and HFBII and Mechanism for Accelerated Film Formation," PLOS Computational Biology, Public Library of Science, vol. 10(7), pages 1-13, July.
  • Handle: RePEc:plo:pcbi00:1003745
    DOI: 10.1371/journal.pcbi.1003745
    as

    Download full text from publisher

    File URL: https://journals.plos.org/ploscompbiol/article?id=10.1371/journal.pcbi.1003745
    Download Restriction: no

    File URL: https://journals.plos.org/ploscompbiol/article/file?id=10.1371/journal.pcbi.1003745&type=printable
    Download Restriction: no

    File URL: https://libkey.io/10.1371/journal.pcbi.1003745?utm_source=ideas
    LibKey link: if access is restricted and if your library uses this service, LibKey will redirect you to where you can use your library subscription to access this item
    ---><---

    References listed on IDEAS

    as
    1. Polterovich, Victor & Popov, Vladimir, 2006. "Эволюционная Теория Экономической Политики: Часть I: Опыт Быстрого Развития [An Evolutionary Theory of Economic Policy: Part I: The Experience of Fast Development]," MPRA Paper 22168, University Library of Munich, Germany.
    2. Vishukumar Aimanianda & Jagadeesh Bayry & Silvia Bozza & Olaf Kniemeyer & Katia Perruccio & Sri Ramulu Elluru & Cécile Clavaud & Sophie Paris & Axel A. Brakhage & Srini V. Kaveri & Luigina Romani & Je, 2009. "Surface hydrophobin prevents immune recognition of airborne fungal spores," Nature, Nature, vol. 460(7259), pages 1117-1121, August.
    3. D. D. Han & J. H. Qian & Y. G. Ma, 2011. "Emergence of double scaling law in complex system," Papers 1103.2001, arXiv.org.
    Full references (including those not matched with items on IDEAS)

    Most related items

    These are the items that most often cite the same works as this one and are cited by the same works as this one.
    1. Kritana Prueksakorn & Cheng-Xu Piao & Hyunchul Ha & Taehyeung Kim, 2015. "Computational and Experimental Investigation for an Optimal Design of Industrial Windows to Allow Natural Ventilation during Wind-Driven Rain," Sustainability, MDPI, vol. 7(8), pages 1-22, August.
    2. Grzegorz W. Kolodko, 2009. "A Two-thirds Rate of Success: Polish Transformation and Economic Development, 1989-2008," WIDER Working Paper Series RP2009-14, World Institute for Development Economic Research (UNU-WIDER).
    3. Kudrin, A. & Gurvich, E., 2015. "Government Stimulus or Economic Incentives?," Journal of the New Economic Association, New Economic Association, vol. 26(2), pages 179-186.
    4. Larysa Tamilina & Natalya Tamilina, 2014. "Heterogeneity in Institutional Effects on Economic Growth: Theory and Empirical Evidence," European Journal of Comparative Economics, Cattaneo University (LIUC), vol. 11(2), pages 205-249, December.
    5. Sturm, J. & Ennifar, H. & Erhard, S.V. & Rheinfeld, A. & Kosch, S. & Jossen, A., 2018. "State estimation of lithium-ion cells using a physicochemical model based extended Kalman filter," Applied Energy, Elsevier, vol. 223(C), pages 103-123.
    6. repec:mje:mjejnl:v:12:y:2017:i:1:p:125-140 is not listed on IDEAS
    7. Sarah Dellière & Camille Chauvin & Sarah Sze Wah Wong & Markus Gressler & Valentina Possetti & Raffaella Parente & Thierry Fontaine & Thomas Krüger & Olaf Kniemeyer & Jagadeesh Bayry & Agostinho Carva, 2024. "Interplay between host humoral pattern recognition molecules controls undue immune responses against Aspergillus fumigatus," Nature Communications, Nature, vol. 15(1), pages 1-16, December.
    8. Okur, Osman & Alper, Erdogan & Almansoori, Ali, 2014. "Optimization of catalyst preparation conditions for direct sodium borohydride fuel cell using response surface methodology," Energy, Elsevier, vol. 67(C), pages 97-105.
    9. Adam S. Posen & Daniel Popov Gould, 2007. "Has EMU Had Any Impact on the Degree of Wage Restraint?," Palgrave Macmillan Books, in: David Cobham (ed.), The Travails of the Eurozone, chapter 7, pages 146-178, Palgrave Macmillan.
    10. Popov, V., 2011. "Do We Need to Protect Intellectual Property Rights?," Journal of the New Economic Association, New Economic Association, issue 11, pages 107-126.
    11. Mo, Jingke & Kang, Zhenye & Yang, Gaoqiang & Retterer, Scott T. & Cullen, David A. & Toops, Todd J. & Green, Johney B. & Zhang, Feng-Yuan, 2016. "Thin liquid/gas diffusion layers for high-efficiency hydrogen production from water splitting," Applied Energy, Elsevier, vol. 177(C), pages 817-822.
    12. Cang, Shuang & Yu, Hongnian, 2014. "A combination selection algorithm on forecasting," European Journal of Operational Research, Elsevier, vol. 234(1), pages 127-139.
    13. Challet, Damien & Solomon, Sorin & Yaari, Gur, 2009. "The universal shape of economic recession and recovery after a shock," Economics - The Open-Access, Open-Assessment E-Journal (2007-2020), Kiel Institute for the World Economy (IfW Kiel), vol. 3, pages 1-24.
    14. Ermete Antolini, 2017. "Pt-Ni and Pt-M-Ni (M = Ru, Sn) Anode Catalysts for Low-Temperature Acidic Direct Alcohol Fuel Cells: A Review," Energies, MDPI, vol. 10(1), pages 1-20, January.
    15. Holvoet, Katrijn M.A. & Seuntjens, Piet & Vanrolleghem, Peter A., 2007. "Monitoring and modeling pesticide fate in surface waters at the catchment scale," Ecological Modelling, Elsevier, vol. 209(1), pages 53-64.
    16. Jinsoo Park & Jung-Il Choi & Gwang Hoon Rhee, 2016. "Enhanced Single-Sided Ventilation with Overhang in Buildings," Energies, MDPI, vol. 9(3), pages 1-14, February.
    17. Jung, Guo-Bin & Tzeng, Wei-Jen & Jao, Ting-Chu & Liu, Yu-Hsu & Yeh, Chia-Chen, 2013. "Investigation of porous carbon and carbon nanotube layer for proton exchange membrane fuel cells," Applied Energy, Elsevier, vol. 101(C), pages 457-464.
    18. Estache, Antonio & Rossi, Martin A., 2008. "Regulatory agencies : impact on firm performance and social welfare," Policy Research Working Paper Series 4509, The World Bank.
    19. Roudbari, Mohsen Najafi & Ojani, Reza & Raoof, Jahan Bakhsh, 2019. "Performance improvement of polymer fuel cell by simultaneously inspection of catalyst loading, catalyst content and ionomer using home-made cathodic half-cell and response surface method," Energy, Elsevier, vol. 173(C), pages 151-161.
    20. Popov, Vladimir & Chowdhury, Anis, 2015. "What Uzbekistan tells us about industrial policy that we did not know?," MPRA Paper 67013, University Library of Munich, Germany.
    21. Mojović, Ljiljana & Pejin, Dušanka & Rakin, Marica & Pejin, Jelena & Nikolić, Svetlana & Djukić-Vuković, Aleksandra, 2012. "How to improve the economy of bioethanol production in Serbia," Renewable and Sustainable Energy Reviews, Elsevier, vol. 16(8), pages 6040-6047.

    More about this item

    Statistics

    Access and download statistics

    Corrections

    All material on this site has been provided by the respective publishers and authors. You can help correct errors and omissions. When requesting a correction, please mention this item's handle: RePEc:plo:pcbi00:1003745. See general information about how to correct material in RePEc.

    If you have authored this item and are not yet registered with RePEc, we encourage you to do it here. This allows to link your profile to this item. It also allows you to accept potential citations to this item that we are uncertain about.

    If CitEc recognized a bibliographic reference but did not link an item in RePEc to it, you can help with this form .

    If you know of missing items citing this one, you can help us creating those links by adding the relevant references in the same way as above, for each refering item. If you are a registered author of this item, you may also want to check the "citations" tab in your RePEc Author Service profile, as there may be some citations waiting for confirmation.

    For technical questions regarding this item, or to correct its authors, title, abstract, bibliographic or download information, contact: ploscompbiol (email available below). General contact details of provider: https://journals.plos.org/ploscompbiol/ .

    Please note that corrections may take a couple of weeks to filter through the various RePEc services.

    IDEAS is a RePEc service. RePEc uses bibliographic data supplied by the respective publishers.