IDEAS home Printed from https://ideas.repec.org/a/eee/lauspo/v137y2024ics0264837723004581.html
   My bibliography  Save this article

Causal attribution of agricultural expansion in a small island system using approximate Bayesian computation

Author

Listed:
  • Clark, Matt
  • Andrews, Jeffrey
  • Kolarik, Nicholas
  • Omar, Mbarouk Mussa
  • Hillis, Vicken

Abstract

The extent and arrangement of land cover types on our planet directly affects biodiversity, carbon storage, water quality, and many other critical social and ecological conditions at virtually all scales. Given the fundamental importance of land cover, a key mandate for land system scientists is to describe the mechanisms by which pertinent cover types spread and shrink. Identifying causal drivers of change is challenging however, because land systems, such as small-scale agricultural communities, do not lend themselves well to controlled experimentation for logistical and ethical reasons. Even natural experiments in these systems can produce only limited causal inference as they often contain unobserved confounding drivers of land cover change and complex feedbacks between drivers and outcomes. Land system scientists commonly grapple with this complexity by using computer simulations to explicitly delineate hypothesized causal pathways that could have resulted in observed land cover change. Yet, land system science lacks a systematic method for comparing multiple hypothesized pathways and quantifying the probability that a given simulated causal process was in fact responsible for the patterns observed. Here we use a case study of agricultural expansion in Pemba, Tanzania to demonstrate how approximate Bayesian computation (ABC) provides a straightforward solution to this methodological gap. Specifically, we pair an individual-based simulation of land cover change in Pemba with ABC to probabilistically estimate the likelihood that observed deforestation from 2018 to 2021 was driven by soil degradation rather than external market forces. Using this approach, we can show not only how well a specific hypothesized mechanism fits with empirical data on land cover change, but we can also quantify the range of other mechanisms that could have reasonably produced the same outcome (i.e. equifinality). While ABC was developed for use in population genetics, we argue that it is particularly promising as a tool for causal inference for land system science given the wealth of data available in the satellite record. Thus, this paper demonstrates a robust process for identifying the emergent landscape-level signatures of complex social-ecological mechanisms.

Suggested Citation

  • Clark, Matt & Andrews, Jeffrey & Kolarik, Nicholas & Omar, Mbarouk Mussa & Hillis, Vicken, 2024. "Causal attribution of agricultural expansion in a small island system using approximate Bayesian computation," Land Use Policy, Elsevier, vol. 137(C).
  • Handle: RePEc:eee:lauspo:v:137:y:2024:i:c:s0264837723004581
    DOI: 10.1016/j.landusepol.2023.106992
    as

    Download full text from publisher

    File URL: http://www.sciencedirect.com/science/article/pii/S0264837723004581
    Download Restriction: Full text for ScienceDirect subscribers only

    File URL: https://libkey.io/10.1016/j.landusepol.2023.106992?utm_source=ideas
    LibKey link: if access is restricted and if your library uses this service, LibKey will redirect you to where you can use your library subscription to access this item
    ---><---

    As the access to this document is restricted, you may want to search for a different version of it.

    References listed on IDEAS

    as
    1. Levin, Simon & Xepapadeas, Tasos & Crépin, Anne-Sophie & Norberg, Jon & de Zeeuw, Aart & Folke, Carl & Hughes, Terry & Arrow, Kenneth & Barrett, Scott & Daily, Gretchen & Ehrlich, Paul & Kautsky, Nils, 2013. "Social-ecological systems as complex adaptive systems: modeling and policy implications," Environment and Development Economics, Cambridge University Press, vol. 18(2), pages 111-132, April.
    2. Mikael Sunnåker & Alberto Giovanni Busetto & Elina Numminen & Jukka Corander & Matthieu Foll & Christophe Dessimoz, 2013. "Approximate Bayesian Computation," PLOS Computational Biology, Public Library of Science, vol. 9(1), pages 1-10, January.
    3. Roy Chowdhury, Pranab K. & Brown, Daniel G., 2023. "Modeling the effects of carbon payments and forest owner cooperatives on carbon storage and revenue in Pacific Northwest forestlands," Land Use Policy, Elsevier, vol. 131(C).
    4. Gregoriy Kaplan & Lior Fine & Victor Lukyanov & V. S. Manivasagam & Josef Tanny & Offer Rozenstein, 2021. "Normalizing the Local Incidence Angle in Sentinel-1 Imagery to Improve Leaf Area Index, Vegetation Height, and Crop Coefficient Estimations," Land, MDPI, vol. 10(7), pages 1-23, June.
    5. Boult, Victoria L. & Quaife, Tristan & Fishlock, Vicki & Moss, Cynthia J. & Lee, Phyllis C. & Sibly, Richard M., 2018. "Individual-based modelling of elephant population dynamics using remote sensing to estimate food availability," Ecological Modelling, Elsevier, vol. 387(C), pages 187-195.
    6. Swanack, Todd M. & Grant, William E. & Forstner, Michael R.J., 2009. "Projecting population trends of endangered amphibian species in the face of uncertainty: A pattern-oriented approach," Ecological Modelling, Elsevier, vol. 220(2), pages 148-159.
    7. van der Vaart, Elske & Beaumont, Mark A. & Johnston, Alice S.A. & Sibly, Richard M., 2015. "Calibration and evaluation of individual-based models using Approximate Bayesian Computation," Ecological Modelling, Elsevier, vol. 312(C), pages 182-190.
    8. An, Li & Grimm, Volker & Sullivan, Abigail & Turner II, B.L. & Malleson, Nicolas & Heppenstall, Alison & Vincenot, Christian & Robinson, Derek & Ye, Xinyue & Liu, Jianguo & Lindkvist, Emilie & Tang, W, 2021. "Challenges, tasks, and opportunities in modeling agent-based complex systems," Ecological Modelling, Elsevier, vol. 457(C).
    9. Turner, B. L. II & Meyfroidt, Patrick & Kuemmerle, Tobias & Müller, Daniel & Chowdhury, Rinku Roy, 2020. "Framing the search for a theory of land use," EconStor Open Access Articles and Book Chapters, ZBW - Leibniz Information Centre for Economics, vol. 15(4), pages 489-508.
    10. Clark, Matt & Andrews, Jeffrey & Hillis, Vicken, 2022. "A quantitative application of diffusion of innovations for modeling the spread of conservation behaviors," Ecological Modelling, Elsevier, vol. 473(C).
    11. Christopher B. Barrett, 2021. "On design-based empirical research and its interpretation and ethics in sustainability science," Proceedings of the National Academy of Sciences, Proceedings of the National Academy of Sciences, vol. 118(29), pages 2023343118-, July.
    12. van der Vaart, Elske & Johnston, Alice S.A. & Sibly, Richard M., 2016. "Predicting how many animals will be where: How to build, calibrate and evaluate individual-based models," Ecological Modelling, Elsevier, vol. 326(C), pages 113-123.
    Full references (including those not matched with items on IDEAS)

    Most related items

    These are the items that most often cite the same works as this one and are cited by the same works as this one.
    1. Watson, Joseph W & Boyd, Robin & Dutta, Ritabrata & Vasdekis, Georgios & Walker, Nicola D. & Roy, Shovonlal & Everitt, Richard & Hyder, Kieran & Sibly, Richard M, 2022. "Incorporating environmental variability in a spatially-explicit individual-based model of European sea bass✰," Ecological Modelling, Elsevier, vol. 466(C).
    2. George Karabatsos, 2023. "Approximate Bayesian computation using asymptotically normal point estimates," Computational Statistics, Springer, vol. 38(2), pages 531-568, June.
    3. Grimm, Volker & Berger, Uta, 2016. "Structural realism, emergence, and predictions in next-generation ecological modelling: Synthesis from a special issue," Ecological Modelling, Elsevier, vol. 326(C), pages 177-187.
    4. Aushev, Alexander & Pesonen, Henri & Heinonen, Markus & Corander, Jukka & Kaski, Samuel, 2022. "Likelihood-free inference with deep Gaussian processes," Computational Statistics & Data Analysis, Elsevier, vol. 174(C).
    5. Boyd, Robin & Roy, Shovonlal & Sibly, Richard & Thorpe, Robert & Hyder, Kieran, 2018. "A general approach to incorporating spatial and temporal variation in individual-based models of fish populations with application to Atlantic mackerel," Ecological Modelling, Elsevier, vol. 382(C), pages 9-17.
    6. Giacomo Ravaioli & Tiago Domingos & Ricardo F. M. Teixeira, 2023. "A Framework for Data-Driven Agent-Based Modelling of Agricultural Land Use," Land, MDPI, vol. 12(4), pages 1-17, March.
    7. Chapron, Guillaume & Wikenros, Camilla & Liberg, Olof & Wabakken, Petter & Flagstad, Øystein & Milleret, Cyril & Månsson, Johan & Svensson, Linn & Zimmermann, Barbara & Åkesson, Mikael & Sand, Håkan, 2016. "Estimating wolf (Canis lupus) population size from number of packs and an individual based model," Ecological Modelling, Elsevier, vol. 339(C), pages 33-44.
    8. de Jager, Monique & Hengeveld, Geerten M. & Mooij, Wolf M. & Slooten, Elisabeth, 2019. "Modelling the spatial dynamics of Maui dolphins using individual-based models," Ecological Modelling, Elsevier, vol. 402(C), pages 59-65.
    9. Richter, Andries & Dakos, Vasilis, 2015. "Profit fluctuations signal eroding resilience of natural resources," Ecological Economics, Elsevier, vol. 117(C), pages 12-21.
    10. Shuaibing Zhang & Kaixu Zhao & Shuoyang Ji & Yafang Guo & Fengqi Wu & Jingxian Liu & Fei Xie, 2022. "Evolution Characteristics, Eco-Environmental Response and Influencing Factors of Production-Living-Ecological Space in the Qinghai–Tibet Plateau," Land, MDPI, vol. 11(7), pages 1-26, July.
    11. David López-Carr, 2021. "A Review of Small Farmer Land Use and Deforestation in Tropical Forest Frontiers: Implications for Conservation and Sustainable Livelihoods," Land, MDPI, vol. 10(11), pages 1-23, October.
    12. Rozenstein, Offer & Fine, Lior & Malachy, Nitzan & Richard, Antoine & Pradalier, Cedric & Tanny, Josef, 2023. "Data-driven estimation of actual evapotranspiration to support irrigation management: Testing two novel methods based on an unoccupied aerial vehicle and an artificial neural network," Agricultural Water Management, Elsevier, vol. 283(C).
    13. Joseph B. Bak-Coleman & Ian Kennedy & Morgan Wack & Andrew Beers & Joseph S. Schafer & Emma S. Spiro & Kate Starbird & Jevin D. West, 2022. "Combining interventions to reduce the spread of viral misinformation," Nature Human Behaviour, Nature, vol. 6(10), pages 1372-1380, October.
    14. W. A. Brock & A. Xepapadeas, 2015. "Modeling Coupled Climate, Ecosystems, and Economic Systems," Working Papers 2015.66, Fondazione Eni Enrico Mattei.
    15. Radosavljevic, Sonja & Haider, L. Jamila & Lade, Steven J. & Schlüter, Maja, 2021. "Implications of poverty traps across levels," World Development, Elsevier, vol. 144(C).
    16. Bourceret, Amélie & Accatino, Francesco & Robert, Corinne, 2024. "A modeling framework of a territorial socio-ecosystem to study the trajectories of change in agricultural phytosanitary practices," Ecological Modelling, Elsevier, vol. 494(C).
    17. Alireza Nouri & Bahram Saghafian & Majid Delavar & Mohammad Reza Bazargan-Lari, 2019. "Agent-Based Modeling for Evaluation of Crop Pattern and Water Management Policies," Water Resources Management: An International Journal, Published for the European Water Resources Association (EWRA), Springer;European Water Resources Association (EWRA), vol. 33(11), pages 3707-3720, September.
    18. Boult, Victoria L. & Quaife, Tristan & Fishlock, Vicki & Moss, Cynthia J. & Lee, Phyllis C. & Sibly, Richard M., 2018. "Individual-based modelling of elephant population dynamics using remote sensing to estimate food availability," Ecological Modelling, Elsevier, vol. 387(C), pages 187-195.
    19. David J Price & Alexandre Breuzé & Richard Dybowski & Piero Mastroeni & Olivier Restif, 2017. "An efficient moments-based inference method for within-host bacterial infection dynamics," PLOS Computational Biology, Public Library of Science, vol. 13(11), pages 1-27, November.
    20. Daniel Silk & Paul D W Kirk & Chris P Barnes & Tina Toni & Michael P H Stumpf, 2014. "Model Selection in Systems Biology Depends on Experimental Design," PLOS Computational Biology, Public Library of Science, vol. 10(6), pages 1-14, June.

    Corrections

    All material on this site has been provided by the respective publishers and authors. You can help correct errors and omissions. When requesting a correction, please mention this item's handle: RePEc:eee:lauspo:v:137:y:2024:i:c:s0264837723004581. See general information about how to correct material in RePEc.

    If you have authored this item and are not yet registered with RePEc, we encourage you to do it here. This allows to link your profile to this item. It also allows you to accept potential citations to this item that we are uncertain about.

    If CitEc recognized a bibliographic reference but did not link an item in RePEc to it, you can help with this form .

    If you know of missing items citing this one, you can help us creating those links by adding the relevant references in the same way as above, for each refering item. If you are a registered author of this item, you may also want to check the "citations" tab in your RePEc Author Service profile, as there may be some citations waiting for confirmation.

    For technical questions regarding this item, or to correct its authors, title, abstract, bibliographic or download information, contact: Joice Jiang (email available below). General contact details of provider: https://www.journals.elsevier.com/land-use-policy .

    Please note that corrections may take a couple of weeks to filter through the various RePEc services.

    IDEAS is a RePEc service. RePEc uses bibliographic data supplied by the respective publishers.