IDEAS home Printed from https://ideas.repec.org/a/plo/pcbi00/1002508.html
   My bibliography  Save this article

Optimal Control of Saccades by Spatial-Temporal Activity Patterns in the Monkey Superior Colliculus

Author

Listed:
  • H H L M Goossens
  • A J van Opstal

Abstract

A major challenge in computational neurobiology is to understand how populations of noisy, broadly-tuned neurons produce accurate goal-directed actions such as saccades. Saccades are high-velocity eye movements that have stereotyped, nonlinear kinematics; their duration increases with amplitude, while peak eye-velocity saturates for large saccades. Recent theories suggest that these characteristics reflect a deliberate strategy that optimizes a speed-accuracy tradeoff in the presence of signal-dependent noise in the neural control signals. Here we argue that the midbrain superior colliculus (SC), a key sensorimotor interface that contains a topographically-organized map of saccade vectors, is in an ideal position to implement such an optimization principle. Most models attribute the nonlinear saccade kinematics to saturation in the brainstem pulse generator downstream from the SC. However, there is little data to support this assumption. We now present new neurophysiological evidence for an alternative scheme, which proposes that these properties reside in the spatial-temporal dynamics of SC activity. As predicted by this scheme, we found a remarkably systematic organization in the burst properties of saccade-related neurons along the rostral-to-caudal (i.e., amplitude-coding) dimension of the SC motor map: peak firing-rates systematically decrease for cells encoding larger saccades, while burst durations and skewness increase, suggesting that this spatial gradient underlies the increase in duration and skewness of the eye velocity profiles with amplitude. We also show that all neurons in the recruited population synchronize their burst profiles, indicating that the burst-timing of each cell is determined by the planned saccade vector in which it participates, rather than by its anatomical location. Together with the observation that saccade-related SC cells indeed show signal-dependent noise, this precisely tuned organization of SC burst activity strongly supports the notion of an optimal motor-control principle embedded in the SC motor map as it fully accounts for the straight trajectories and kinematic nonlinearity of saccades. Author Summary: As the fovea is the only spot on the retina with high spatial resolution, primates need to move their eyes to peripheral targets for detailed inspection. Saccades are the fastest movements of the body, and theoretical studies suggest that their trajectories are optimized to bring the fovea as fast and accurately as possible on target. Speed-accuracy optimization principles explain the stereotyped nonlinear ‘main-sequence’ relationship between saccade amplitude, duration, and peak velocity. Earlier models attributed these kinematic properties to nonlinear neural circuitry in the brainstem but this creates problems for oblique saccades. Here, we demonstrate how the brainstem can be linear, and how instead the midbrain superior colliculus (SC) could optimize saccadic speed-accuracy tradeoff. Each saccade involves the recruitment of a large population of SC neurons. We show that peak firing-rate and burst shape of the recruited cells systematically vary with their location in the SC, and that burst shapes nicely match the eye-velocity profiles. This organization of burst properties fully explains the main-sequence. Moreover, all cells synchronize their bursts, thus maximizing the total instantaneous input to the brainstem, and ensuring that oblique saccades have straight trajectories. We thus discovered a sophisticated neural mechanism underlying optimal motor control in the brain.

Suggested Citation

  • H H L M Goossens & A J van Opstal, 2012. "Optimal Control of Saccades by Spatial-Temporal Activity Patterns in the Monkey Superior Colliculus," PLOS Computational Biology, Public Library of Science, vol. 8(5), pages 1-18, May.
  • Handle: RePEc:plo:pcbi00:1002508
    DOI: 10.1371/journal.pcbi.1002508
    as

    Download full text from publisher

    File URL: https://journals.plos.org/ploscompbiol/article?id=10.1371/journal.pcbi.1002508
    Download Restriction: no

    File URL: https://journals.plos.org/ploscompbiol/article/file?id=10.1371/journal.pcbi.1002508&type=printable
    Download Restriction: no

    File URL: https://libkey.io/10.1371/journal.pcbi.1002508?utm_source=ideas
    LibKey link: if access is restricted and if your library uses this service, LibKey will redirect you to where you can use your library subscription to access this item
    ---><---

    References listed on IDEAS

    as
    1. Robert J van Beers, 2008. "Saccadic Eye Movements Minimize the Consequences of Motor Noise," PLOS ONE, Public Library of Science, vol. 3(4), pages 1-8, April.
    2. Christopher M. Harris & Daniel M. Wolpert, 1998. "Signal-dependent noise determines motor planning," Nature, Nature, vol. 394(6695), pages 780-784, August.
    Full references (including those not matched with items on IDEAS)

    Citations

    Citations are extracted by the CitEc Project, subscribe to its RSS feed for this item.
    as


    Cited by:

    1. Nienke B Debats & Idsart Kingma & Peter J Beek & Jeroen B J Smeets, 2012. "Moving the Weber Fraction: The Perceptual Precision for Moment of Inertia Increases with Exploration Force," PLOS ONE, Public Library of Science, vol. 7(9), pages 1-9, September.
    2. Jungah Lee & Jennifer M Groh, 2014. "Different Stimuli, Different Spatial Codes: A Visual Map and an Auditory Rate Code for Oculomotor Space in the Primate Superior Colliculus," PLOS ONE, Public Library of Science, vol. 9(1), pages 1-14, January.

    Most related items

    These are the items that most often cite the same works as this one and are cited by the same works as this one.
    1. Bastien Berret & Adrien Conessa & Nicolas Schweighofer & Etienne Burdet, 2021. "Stochastic optimal feedforward-feedback control determines timing and variability of arm movements with or without vision," PLOS Computational Biology, Public Library of Science, vol. 17(6), pages 1-24, June.
    2. Robert J van Beers & Yor van der Meer & Richard M Veerman, 2013. "What Autocorrelation Tells Us about Motor Variability: Insights from Dart Throwing," PLOS ONE, Public Library of Science, vol. 8(5), pages 1-8, May.
    3. Shogo Yonekura & Yasuo Kuniyoshi, 2017. "Bodily motion fluctuation improves reaching success rate in a neurophysical agent via geometric-stochastic resonance," PLOS ONE, Public Library of Science, vol. 12(12), pages 1-16, December.
    4. Shih-Wei Wu & Maria F Dal Martello & Laurence T Maloney, 2009. "Sub-Optimal Allocation of Time in Sequential Movements," PLOS ONE, Public Library of Science, vol. 4(12), pages 1-13, December.
    5. Max Berniker & Megan K O’Brien & Konrad P Kording & Alaa A Ahmed, 2013. "An Examination of the Generalizability of Motor Costs," PLOS ONE, Public Library of Science, vol. 8(1), pages 1-11, January.
    6. Lionel Rigoux & Emmanuel Guigon, 2012. "A Model of Reward- and Effort-Based Optimal Decision Making and Motor Control," PLOS Computational Biology, Public Library of Science, vol. 8(10), pages 1-13, October.
    7. Yanhao Ren & Qiang Luo & Wenlian Lu, 2023. "Synchronization Analysis of Linearly Coupled Systems with Signal-Dependent Noises," Mathematics, MDPI, vol. 11(10), pages 1-15, May.
    8. Christopher J Hasson & Zhaoran Zhang & Masaki O Abe & Dagmar Sternad, 2016. "Neuromotor Noise Is Malleable by Amplifying Perceived Errors," PLOS Computational Biology, Public Library of Science, vol. 12(8), pages 1-28, August.
    9. Seth W. Egger & Stephen G. Lisberger, 2022. "Neural structure of a sensory decoder for motor control," Nature Communications, Nature, vol. 13(1), pages 1-13, December.
    10. Ashesh Vasalya & Gowrishankar Ganesh & Abderrahmane Kheddar, 2018. "More than just co-workers: Presence of humanoid robot co-worker influences human performance," PLOS ONE, Public Library of Science, vol. 13(11), pages 1-19, November.
    11. Josh Merel & Donald M Pianto & John P Cunningham & Liam Paninski, 2015. "Encoder-Decoder Optimization for Brain-Computer Interfaces," PLOS Computational Biology, Public Library of Science, vol. 11(6), pages 1-25, June.
    12. Nidhi Seethapathi & Barrett C. Clark & Manoj Srinivasan, 2024. "Exploration-based learning of a stabilizing controller predicts locomotor adaptation," Nature Communications, Nature, vol. 15(1), pages 1-23, December.
    13. Maxime Teremetz & Isabelle Amado & Narjes Bendjemaa & Marie-Odile Krebs & Pavel G Lindberg & Marc A Maier, 2014. "Deficient Grip Force Control in Schizophrenia: Behavioral and Modeling Evidence for Altered Motor Inhibition and Motor Noise," PLOS ONE, Public Library of Science, vol. 9(11), pages 1-11, November.
    14. Frederic Danion & Raoul M Bongers & Reinoud J Bootsma, 2014. "The Trade-Off between Spatial and Temporal Variabilities in Reciprocal Upper-Limb Aiming Movements of Different Durations," PLOS ONE, Public Library of Science, vol. 9(5), pages 1-10, May.
    15. Wei Zhang & Sasha Reschechtko & Barry Hahn & Cynthia Benson & Elias Youssef, 2019. "Force-stabilizing synergies can be retained by coordinating sensory-blocked and sensory-intact digits," PLOS ONE, Public Library of Science, vol. 14(12), pages 1-17, December.
    16. Julian J Tramper & Bart van den Broek & Wim Wiegerinck & Hilbert J Kappen & Stan Gielen, 2012. "Time-Integrated Position Error Accounts for Sensorimotor Behavior in Time-Constrained Tasks," PLOS ONE, Public Library of Science, vol. 7(3), pages 1-10, March.
    17. Konrad P Körding & Izumi Fukunaga & Ian S Howard & James N Ingram & Daniel M Wolpert, 2004. "A Neuroeconomics Approach to Inferring Utility Functions in Sensorimotor Control," PLOS Biology, Public Library of Science, vol. 2(10), pages 1-1, September.
    18. Pierre Morel & Philipp Ulbrich & Alexander Gail, 2017. "What makes a reach movement effortful? Physical effort discounting supports common minimization principles in decision making and motor control," PLOS Biology, Public Library of Science, vol. 15(6), pages 1-23, June.
    19. Matthew A Slayton & Juan L Romero-Sosa & Katrina Shore & Dean V Buonomano & Indre V Viskontas, 2020. "Musical expertise generalizes to superior temporal scaling in a Morse code tapping task," PLOS ONE, Public Library of Science, vol. 15(1), pages 1-9, January.
    20. Christopher K Rhea & Tobin A Silver & S Lee Hong & Joong Hyun Ryu & Breanna E Studenka & Charmayne M L Hughes & Jeffrey M Haddad, 2011. "Noise and Complexity in Human Postural Control: Interpreting the Different Estimations of Entropy," PLOS ONE, Public Library of Science, vol. 6(3), pages 1-9, March.

    More about this item

    Statistics

    Access and download statistics

    Corrections

    All material on this site has been provided by the respective publishers and authors. You can help correct errors and omissions. When requesting a correction, please mention this item's handle: RePEc:plo:pcbi00:1002508. See general information about how to correct material in RePEc.

    If you have authored this item and are not yet registered with RePEc, we encourage you to do it here. This allows to link your profile to this item. It also allows you to accept potential citations to this item that we are uncertain about.

    If CitEc recognized a bibliographic reference but did not link an item in RePEc to it, you can help with this form .

    If you know of missing items citing this one, you can help us creating those links by adding the relevant references in the same way as above, for each refering item. If you are a registered author of this item, you may also want to check the "citations" tab in your RePEc Author Service profile, as there may be some citations waiting for confirmation.

    For technical questions regarding this item, or to correct its authors, title, abstract, bibliographic or download information, contact: ploscompbiol (email available below). General contact details of provider: https://journals.plos.org/ploscompbiol/ .

    Please note that corrections may take a couple of weeks to filter through the various RePEc services.

    IDEAS is a RePEc service. RePEc uses bibliographic data supplied by the respective publishers.