IDEAS home Printed from https://ideas.repec.org/a/plo/pone00/0042941.html
   My bibliography  Save this article

Moving the Weber Fraction: The Perceptual Precision for Moment of Inertia Increases with Exploration Force

Author

Listed:
  • Nienke B Debats
  • Idsart Kingma
  • Peter J Beek
  • Jeroen B J Smeets

Abstract

How does the magnitude of the exploration force influence the precision of haptic perceptual estimates? To address this question, we examined the perceptual precision for moment of inertia (i.e., an object's “angular mass”) under different force conditions, using the Weber fraction to quantify perceptual precision. Participants rotated a rod around a fixed axis and judged its moment of inertia in a two-alternative forced-choice task. We instructed different levels of exploration force, thereby manipulating the magnitude of both the exploration force and the angular acceleration. These are the two signals that are needed by the nervous system to estimate moment of inertia. Importantly, one can assume that the absolute noise on both signals increases with an increase in the signals' magnitudes, while the relative noise (i.e., noise/signal) decreases with an increase in signal magnitude. We examined how the perceptual precision for moment of inertia was affected by this neural noise. In a first experiment we found that a low exploration force caused a higher Weber fraction (22%) than a high exploration force (13%), which suggested that the perceptual precision was constrained by the relative noise. This hypothesis was supported by the result of a second experiment, in which we found that the relationship between exploration force and Weber fraction had a similar shape as the theoretical relationship between signal magnitude and relative noise. The present study thus demonstrated that the amount of force used to explore an object can profoundly influence the precision by which its properties are perceived.

Suggested Citation

  • Nienke B Debats & Idsart Kingma & Peter J Beek & Jeroen B J Smeets, 2012. "Moving the Weber Fraction: The Perceptual Precision for Moment of Inertia Increases with Exploration Force," PLOS ONE, Public Library of Science, vol. 7(9), pages 1-9, September.
  • Handle: RePEc:plo:pone00:0042941
    DOI: 10.1371/journal.pone.0042941
    as

    Download full text from publisher

    File URL: https://journals.plos.org/plosone/article?id=10.1371/journal.pone.0042941
    Download Restriction: no

    File URL: https://journals.plos.org/plosone/article/file?id=10.1371/journal.pone.0042941&type=printable
    Download Restriction: no

    File URL: https://libkey.io/10.1371/journal.pone.0042941?utm_source=ideas
    LibKey link: if access is restricted and if your library uses this service, LibKey will redirect you to where you can use your library subscription to access this item
    ---><---

    References listed on IDEAS

    as
    1. H H L M Goossens & A J van Opstal, 2012. "Optimal Control of Saccades by Spatial-Temporal Activity Patterns in the Monkey Superior Colliculus," PLOS Computational Biology, Public Library of Science, vol. 8(5), pages 1-18, May.
    2. Marc O. Ernst & Martin S. Banks, 2002. "Humans integrate visual and haptic information in a statistically optimal fashion," Nature, Nature, vol. 415(6870), pages 429-433, January.
    3. Christopher M. Harris & Daniel M. Wolpert, 1998. "Signal-dependent noise determines motor planning," Nature, Nature, vol. 394(6695), pages 780-784, August.
    Full references (including those not matched with items on IDEAS)

    Most related items

    These are the items that most often cite the same works as this one and are cited by the same works as this one.
    1. Seth W. Egger & Stephen G. Lisberger, 2022. "Neural structure of a sensory decoder for motor control," Nature Communications, Nature, vol. 13(1), pages 1-13, December.
    2. Ryoji Onagawa & Kae Mukai & Kazutoshi Kudo, 2022. "Different planning policies for the initial movement velocity depending on whether the known uncertainty is in the cursor or in the target: Motor planning in situations where two potential movement di," PLOS ONE, Public Library of Science, vol. 17(3), pages 1-19, March.
    3. Shogo Yonekura & Yasuo Kuniyoshi, 2017. "Bodily motion fluctuation improves reaching success rate in a neurophysical agent via geometric-stochastic resonance," PLOS ONE, Public Library of Science, vol. 12(12), pages 1-16, December.
    4. Shih-Wei Wu & Maria F Dal Martello & Laurence T Maloney, 2009. "Sub-Optimal Allocation of Time in Sequential Movements," PLOS ONE, Public Library of Science, vol. 4(12), pages 1-13, December.
    5. Simon Weiler & Vahid Rahmati & Marcel Isstas & Johann Wutke & Andreas Walter Stark & Christian Franke & Jürgen Graf & Christian Geis & Otto W. Witte & Mark Hübener & Jürgen Bolz & Troy W. Margrie & Kn, 2024. "A primary sensory cortical interareal feedforward inhibitory circuit for tacto-visual integration," Nature Communications, Nature, vol. 15(1), pages 1-24, December.
    6. Max Berniker & Megan K O’Brien & Konrad P Kording & Alaa A Ahmed, 2013. "An Examination of the Generalizability of Motor Costs," PLOS ONE, Public Library of Science, vol. 8(1), pages 1-11, January.
    7. Catarina Mendonça & Pietro Mandelli & Ville Pulkki, 2016. "Modeling the Perception of Audiovisual Distance: Bayesian Causal Inference and Other Models," PLOS ONE, Public Library of Science, vol. 11(12), pages 1-18, December.
    8. Jungah Lee & Jennifer M Groh, 2014. "Different Stimuli, Different Spatial Codes: A Visual Map and an Auditory Rate Code for Oculomotor Space in the Primate Superior Colliculus," PLOS ONE, Public Library of Science, vol. 9(1), pages 1-14, January.
    9. Jacques Pesnot Lerousseau & Cesare V. Parise & Marc O. Ernst & Virginie Wassenhove, 2022. "Multisensory correlation computations in the human brain identified by a time-resolved encoding model," Nature Communications, Nature, vol. 13(1), pages 1-12, December.
    10. Wen-Hao Zhang & Si Wu & Krešimir Josić & Brent Doiron, 2023. "Sampling-based Bayesian inference in recurrent circuits of stochastic spiking neurons," Nature Communications, Nature, vol. 14(1), pages 1-19, December.
    11. Lionel Rigoux & Emmanuel Guigon, 2012. "A Model of Reward- and Effort-Based Optimal Decision Making and Motor Control," PLOS Computational Biology, Public Library of Science, vol. 8(10), pages 1-13, October.
    12. Marine Hainguerlot & Thibault Gajdos & Jean-Christophe Vergnaud & Vincent de Gardelle, 2023. "How Overconfidence Bias Influences Suboptimality in Perceptual Decision Making," PSE-Ecole d'économie de Paris (Postprint) hal-04197403, HAL.
    13. Yanhao Ren & Qiang Luo & Wenlian Lu, 2023. "Synchronization Analysis of Linearly Coupled Systems with Signal-Dependent Noises," Mathematics, MDPI, vol. 11(10), pages 1-15, May.
    14. Adam N Sanborn & Ulrik R Beierholm, 2016. "Fast and Accurate Learning When Making Discrete Numerical Estimates," PLOS Computational Biology, Public Library of Science, vol. 12(4), pages 1-28, April.
    15. Patricia Besson & Christophe Bourdin & Lionel Bringoux, 2011. "A Comprehensive Model of Audiovisual Perception: Both Percept and Temporal Dynamics," PLOS ONE, Public Library of Science, vol. 6(8), pages 1-11, August.
    16. Anthony Renard & Evan R. Harrell & Brice Bathellier, 2022. "Olfactory modulation of barrel cortex activity during active whisking and passive whisker stimulation," Nature Communications, Nature, vol. 13(1), pages 1-13, December.
    17. Christopher J Hasson & Zhaoran Zhang & Masaki O Abe & Dagmar Sternad, 2016. "Neuromotor Noise Is Malleable by Amplifying Perceived Errors," PLOS Computational Biology, Public Library of Science, vol. 12(8), pages 1-28, August.
    18. Ashesh Vasalya & Gowrishankar Ganesh & Abderrahmane Kheddar, 2018. "More than just co-workers: Presence of humanoid robot co-worker influences human performance," PLOS ONE, Public Library of Science, vol. 13(11), pages 1-19, November.
    19. Wendy J Adams, 2016. "The Development of Audio-Visual Integration for Temporal Judgements," PLOS Computational Biology, Public Library of Science, vol. 12(4), pages 1-17, April.
    20. Tim Genewein & Eduard Hez & Zeynab Razzaghpanah & Daniel A Braun, 2015. "Structure Learning in Bayesian Sensorimotor Integration," PLOS Computational Biology, Public Library of Science, vol. 11(8), pages 1-27, August.

    More about this item

    Statistics

    Access and download statistics

    Corrections

    All material on this site has been provided by the respective publishers and authors. You can help correct errors and omissions. When requesting a correction, please mention this item's handle: RePEc:plo:pone00:0042941. See general information about how to correct material in RePEc.

    If you have authored this item and are not yet registered with RePEc, we encourage you to do it here. This allows to link your profile to this item. It also allows you to accept potential citations to this item that we are uncertain about.

    If CitEc recognized a bibliographic reference but did not link an item in RePEc to it, you can help with this form .

    If you know of missing items citing this one, you can help us creating those links by adding the relevant references in the same way as above, for each refering item. If you are a registered author of this item, you may also want to check the "citations" tab in your RePEc Author Service profile, as there may be some citations waiting for confirmation.

    For technical questions regarding this item, or to correct its authors, title, abstract, bibliographic or download information, contact: plosone (email available below). General contact details of provider: https://journals.plos.org/plosone/ .

    Please note that corrections may take a couple of weeks to filter through the various RePEc services.

    IDEAS is a RePEc service. RePEc uses bibliographic data supplied by the respective publishers.