IDEAS home Printed from https://ideas.repec.org/a/plo/pone00/0033724.html
   My bibliography  Save this article

Time-Integrated Position Error Accounts for Sensorimotor Behavior in Time-Constrained Tasks

Author

Listed:
  • Julian J Tramper
  • Bart van den Broek
  • Wim Wiegerinck
  • Hilbert J Kappen
  • Stan Gielen

Abstract

Several studies have shown that human motor behavior can be successfully described using optimal control theory, which describes behavior by optimizing the trade-off between the subject's effort and performance. This approach predicts that subjects reach the goal exactly at the final time. However, another strategy might be that subjects try to reach the target position well before the final time to avoid the risk of missing the target. To test this, we have investigated whether minimizing the control effort and maximizing the performance is sufficient to describe human motor behavior in time-constrained motor tasks. In addition to the standard model, we postulate a new model which includes an additional cost criterion which penalizes deviations between the position of the effector and the target throughout the trial, forcing arrival on target before the final time. To investigate which model gives the best fit to the data and to see whether that model is generic, we tested both models in two different tasks where subjects used a joystick to steer a ball on a screen to hit a target (first task) or one of two targets (second task) before a final time. Noise of different amplitudes was superimposed on the ball position to investigate the ability of the models to predict motor behavior for different levels of uncertainty. The results show that a cost function representing only a trade-off between effort and accuracy at the end time is insufficient to describe the observed behavior. The new model correctly predicts that subjects steer the ball to the target position well before the final time is reached, which is in agreement with the observed behavior. This result is consistent for all noise amplitudes and for both tasks.

Suggested Citation

  • Julian J Tramper & Bart van den Broek & Wim Wiegerinck & Hilbert J Kappen & Stan Gielen, 2012. "Time-Integrated Position Error Accounts for Sensorimotor Behavior in Time-Constrained Tasks," PLOS ONE, Public Library of Science, vol. 7(3), pages 1-10, March.
  • Handle: RePEc:plo:pone00:0033724
    DOI: 10.1371/journal.pone.0033724
    as

    Download full text from publisher

    File URL: https://journals.plos.org/plosone/article?id=10.1371/journal.pone.0033724
    Download Restriction: no

    File URL: https://journals.plos.org/plosone/article/file?id=10.1371/journal.pone.0033724&type=printable
    Download Restriction: no

    File URL: https://libkey.io/10.1371/journal.pone.0033724?utm_source=ideas
    LibKey link: if access is restricted and if your library uses this service, LibKey will redirect you to where you can use your library subscription to access this item
    ---><---

    References listed on IDEAS

    as
    1. Arne J Nagengast & Daniel A Braun & Daniel M Wolpert, 2010. "Risk-Sensitive Optimal Feedback Control Accounts for Sensorimotor Behavior under Uncertainty," PLOS Computational Biology, Public Library of Science, vol. 6(7), pages 1-15, July.
    2. Daniel A Braun & Pedro A Ortega & Daniel M Wolpert, 2009. "Nash Equilibria in Multi-Agent Motor Interactions," PLOS Computational Biology, Public Library of Science, vol. 5(8), pages 1-8, August.
    3. Christopher M. Harris & Daniel M. Wolpert, 1998. "Signal-dependent noise determines motor planning," Nature, Nature, vol. 394(6695), pages 780-784, August.
    Full references (including those not matched with items on IDEAS)

    Most related items

    These are the items that most often cite the same works as this one and are cited by the same works as this one.
    1. Lionel Rigoux & Emmanuel Guigon, 2012. "A Model of Reward- and Effort-Based Optimal Decision Making and Motor Control," PLOS Computational Biology, Public Library of Science, vol. 8(10), pages 1-13, October.
    2. Arne J Nagengast & Daniel A Braun & Daniel M Wolpert, 2010. "Risk-Sensitive Optimal Feedback Control Accounts for Sensorimotor Behavior under Uncertainty," PLOS Computational Biology, Public Library of Science, vol. 6(7), pages 1-15, July.
    3. Dagmar Sternad & Masaki O Abe & Xiaogang Hu & Hermann Müller, 2011. "Neuromotor Noise, Error Tolerance and Velocity-Dependent Costs in Skilled Performance," PLOS Computational Biology, Public Library of Science, vol. 7(9), pages 1-15, September.
    4. Shogo Yonekura & Yasuo Kuniyoshi, 2017. "Bodily motion fluctuation improves reaching success rate in a neurophysical agent via geometric-stochastic resonance," PLOS ONE, Public Library of Science, vol. 12(12), pages 1-16, December.
    5. Shih-Wei Wu & Maria F Dal Martello & Laurence T Maloney, 2009. "Sub-Optimal Allocation of Time in Sequential Movements," PLOS ONE, Public Library of Science, vol. 4(12), pages 1-13, December.
    6. Vinil T Chackochan & Vittorio Sanguineti, 2019. "Incomplete information about the partner affects the development of collaborative strategies in joint action," PLOS Computational Biology, Public Library of Science, vol. 15(12), pages 1-23, December.
    7. Max Berniker & Megan K O’Brien & Konrad P Kording & Alaa A Ahmed, 2013. "An Examination of the Generalizability of Motor Costs," PLOS ONE, Public Library of Science, vol. 8(1), pages 1-11, January.
    8. Yanhao Ren & Qiang Luo & Wenlian Lu, 2023. "Synchronization Analysis of Linearly Coupled Systems with Signal-Dependent Noises," Mathematics, MDPI, vol. 11(10), pages 1-15, May.
    9. Christopher J Hasson & Zhaoran Zhang & Masaki O Abe & Dagmar Sternad, 2016. "Neuromotor Noise Is Malleable by Amplifying Perceived Errors," PLOS Computational Biology, Public Library of Science, vol. 12(8), pages 1-28, August.
    10. Seth W. Egger & Stephen G. Lisberger, 2022. "Neural structure of a sensory decoder for motor control," Nature Communications, Nature, vol. 13(1), pages 1-13, December.
    11. Ashesh Vasalya & Gowrishankar Ganesh & Abderrahmane Kheddar, 2018. "More than just co-workers: Presence of humanoid robot co-worker influences human performance," PLOS ONE, Public Library of Science, vol. 13(11), pages 1-19, November.
    12. Josh Merel & Donald M Pianto & John P Cunningham & Liam Paninski, 2015. "Encoder-Decoder Optimization for Brain-Computer Interfaces," PLOS Computational Biology, Public Library of Science, vol. 11(6), pages 1-25, June.
    13. Nidhi Seethapathi & Barrett C. Clark & Manoj Srinivasan, 2024. "Exploration-based learning of a stabilizing controller predicts locomotor adaptation," Nature Communications, Nature, vol. 15(1), pages 1-23, December.
    14. Maxime Teremetz & Isabelle Amado & Narjes Bendjemaa & Marie-Odile Krebs & Pavel G Lindberg & Marc A Maier, 2014. "Deficient Grip Force Control in Schizophrenia: Behavioral and Modeling Evidence for Altered Motor Inhibition and Motor Noise," PLOS ONE, Public Library of Science, vol. 9(11), pages 1-11, November.
    15. Frederic Danion & Raoul M Bongers & Reinoud J Bootsma, 2014. "The Trade-Off between Spatial and Temporal Variabilities in Reciprocal Upper-Limb Aiming Movements of Different Durations," PLOS ONE, Public Library of Science, vol. 9(5), pages 1-10, May.
    16. Wei Zhang & Sasha Reschechtko & Barry Hahn & Cynthia Benson & Elias Youssef, 2019. "Force-stabilizing synergies can be retained by coordinating sensory-blocked and sensory-intact digits," PLOS ONE, Public Library of Science, vol. 14(12), pages 1-17, December.
    17. Konrad P Körding & Izumi Fukunaga & Ian S Howard & James N Ingram & Daniel M Wolpert, 2004. "A Neuroeconomics Approach to Inferring Utility Functions in Sensorimotor Control," PLOS Biology, Public Library of Science, vol. 2(10), pages 1-1, September.
    18. Pierre Morel & Philipp Ulbrich & Alexander Gail, 2017. "What makes a reach movement effortful? Physical effort discounting supports common minimization principles in decision making and motor control," PLOS Biology, Public Library of Science, vol. 15(6), pages 1-23, June.
    19. Matthew A Slayton & Juan L Romero-Sosa & Katrina Shore & Dean V Buonomano & Indre V Viskontas, 2020. "Musical expertise generalizes to superior temporal scaling in a Morse code tapping task," PLOS ONE, Public Library of Science, vol. 15(1), pages 1-9, January.
    20. Christopher K Rhea & Tobin A Silver & S Lee Hong & Joong Hyun Ryu & Breanna E Studenka & Charmayne M L Hughes & Jeffrey M Haddad, 2011. "Noise and Complexity in Human Postural Control: Interpreting the Different Estimations of Entropy," PLOS ONE, Public Library of Science, vol. 6(3), pages 1-9, March.

    More about this item

    Statistics

    Access and download statistics

    Corrections

    All material on this site has been provided by the respective publishers and authors. You can help correct errors and omissions. When requesting a correction, please mention this item's handle: RePEc:plo:pone00:0033724. See general information about how to correct material in RePEc.

    If you have authored this item and are not yet registered with RePEc, we encourage you to do it here. This allows to link your profile to this item. It also allows you to accept potential citations to this item that we are uncertain about.

    If CitEc recognized a bibliographic reference but did not link an item in RePEc to it, you can help with this form .

    If you know of missing items citing this one, you can help us creating those links by adding the relevant references in the same way as above, for each refering item. If you are a registered author of this item, you may also want to check the "citations" tab in your RePEc Author Service profile, as there may be some citations waiting for confirmation.

    For technical questions regarding this item, or to correct its authors, title, abstract, bibliographic or download information, contact: plosone (email available below). General contact details of provider: https://journals.plos.org/plosone/ .

    Please note that corrections may take a couple of weeks to filter through the various RePEc services.

    IDEAS is a RePEc service. RePEc uses bibliographic data supplied by the respective publishers.