IDEAS home Printed from https://ideas.repec.org/a/plo/pcbi00/1002332.html
   My bibliography  Save this article

Radial and Spiral Stream Formation in Proteus mirabilis Colonies

Author

Listed:
  • Chuan Xue
  • Elena O Budrene
  • Hans G Othmer

Abstract

The enteric bacterium Proteus mirabilis, which is a pathogen that forms biofilms in vivo, can swarm over hard surfaces and form a variety of spatial patterns in colonies. Colony formation involves two distinct cell types: swarmer cells that dominate near the surface and the leading edge, and swimmer cells that prefer a less viscous medium, but the mechanisms underlying pattern formation are not understood. New experimental investigations reported here show that swimmer cells in the center of the colony stream inward toward the inoculation site and in the process form many complex patterns, including radial and spiral streams, in addition to previously-reported concentric rings. These new observations suggest that swimmers are motile and that indirect interactions between them are essential in the pattern formation. To explain these observations we develop a hybrid model comprising cell-based and continuum components that incorporates a chemotactic response of swimmers to a chemical they produce. The model predicts that formation of radial streams can be explained as the modulation of the local attractant concentration by the cells, and that the chirality of the spiral streams results from a swimming bias of the cells near the surface of the substrate. The spatial patterns generated from the model are in qualitative agreement with the experimental observations. Author Summary: Bacteria frequently colonize surfaces and grow as biofilm communities embedded in a gel-like polysaccharide matrix, and when this occurs on catheters, heart valves and other medical implants, it can lead to serious, hard-to-treat infections. Proteus mirabilis is an enteric bacterium that forms biofilms on urinary catheters, but in laboratory experiments it can swarm over hard surfaces and form a variety of spatial patterns. Understanding these patterns is a first step toward understanding biofilm formation, and here we describe new experimental results and mathematical models of pattern formation in Proteus. The experiments show that swimmer cells in the center of the colony stream inward toward the inoculation site and in the process form many complex patterns, including radial and spiral streams, in addition to concentric rings. To explain these observations we develop a model that incorporates a chemotactic response of swimmers to a chemical they produce. The model predicts that formation of radial streams can be explained as the modulation of the local attractant concentration by the cells, and that the chirality of the spiral streams can be predicted by incorporating a swimming bias of the cells near the surface of the substrate.

Suggested Citation

  • Chuan Xue & Elena O Budrene & Hans G Othmer, 2011. "Radial and Spiral Stream Formation in Proteus mirabilis Colonies," PLOS Computational Biology, Public Library of Science, vol. 7(12), pages 1-11, December.
  • Handle: RePEc:plo:pcbi00:1002332
    DOI: 10.1371/journal.pcbi.1002332
    as

    Download full text from publisher

    File URL: https://journals.plos.org/ploscompbiol/article?id=10.1371/journal.pcbi.1002332
    Download Restriction: no

    File URL: https://journals.plos.org/ploscompbiol/article/file?id=10.1371/journal.pcbi.1002332&type=printable
    Download Restriction: no

    File URL: https://libkey.io/10.1371/journal.pcbi.1002332?utm_source=ideas
    LibKey link: if access is restricted and if your library uses this service, LibKey will redirect you to where you can use your library subscription to access this item
    ---><---

    References listed on IDEAS

    as
    1. Willow R. DiLuzio & Linda Turner & Michael Mayer & Piotr Garstecki & Douglas B. Weibel & Howard C. Berg & George M. Whitesides, 2005. "Escherichia coli swim on the right-hand side," Nature, Nature, vol. 435(7046), pages 1271-1274, June.
    2. Ben-Jacob, Eshel & Cohen, Inon & Czirók, András & Vicsek, Tamás & Gutnick, David L., 1997. "Chemomodulation of cellular movement, collective formation of vortices by swarming bacteria, and colonial development," Physica A: Statistical Mechanics and its Applications, Elsevier, vol. 238(1), pages 181-197.
    Full references (including those not matched with items on IDEAS)

    Most related items

    These are the items that most often cite the same works as this one and are cited by the same works as this one.
    1. Cohen, Inon & Ron, Ilan G & Ben-Jacob, Eshel, 2000. "From branching to nebula patterning during colonial development of the Paenibacillus alvei bacteria," Physica A: Statistical Mechanics and its Applications, Elsevier, vol. 286(1), pages 321-336.
    2. Ben-Jacob, Eshel, 1998. "Bacterial wisdom, Gödel's theorem and creative genomic webs," Physica A: Statistical Mechanics and its Applications, Elsevier, vol. 248(1), pages 57-76.
    3. Golding, Ido & Kozlovsky, Yonathan & Cohen, Inon & Ben-Jacob, Eshel, 1998. "Studies of bacterial branching growth using reaction–diffusion models for colonial development," Physica A: Statistical Mechanics and its Applications, Elsevier, vol. 260(3), pages 510-554.
    4. Ron, Ilan G. & Golding, Ido & Lifsitz-Mercer, Beatrice & Ben-Jacob, Eshel, 2003. "Bursts of sectors in expanding bacterial colonies as a possible model for tumor growth and metastases," Physica A: Statistical Mechanics and its Applications, Elsevier, vol. 320(C), pages 485-496.
    5. Ben-Jacob, Eshel & Cohen, Inon & Golding, Ido & Gutnick, David L. & Tcherpakov, Marianna & Helbing, Dirk & Ron, Ilan G., 2000. "Bacterial cooperative organization under antibiotic stress," Physica A: Statistical Mechanics and its Applications, Elsevier, vol. 282(1), pages 247-282.

    More about this item

    Statistics

    Access and download statistics

    Corrections

    All material on this site has been provided by the respective publishers and authors. You can help correct errors and omissions. When requesting a correction, please mention this item's handle: RePEc:plo:pcbi00:1002332. See general information about how to correct material in RePEc.

    If you have authored this item and are not yet registered with RePEc, we encourage you to do it here. This allows to link your profile to this item. It also allows you to accept potential citations to this item that we are uncertain about.

    If CitEc recognized a bibliographic reference but did not link an item in RePEc to it, you can help with this form .

    If you know of missing items citing this one, you can help us creating those links by adding the relevant references in the same way as above, for each refering item. If you are a registered author of this item, you may also want to check the "citations" tab in your RePEc Author Service profile, as there may be some citations waiting for confirmation.

    For technical questions regarding this item, or to correct its authors, title, abstract, bibliographic or download information, contact: ploscompbiol (email available below). General contact details of provider: https://journals.plos.org/ploscompbiol/ .

    Please note that corrections may take a couple of weeks to filter through the various RePEc services.

    IDEAS is a RePEc service. RePEc uses bibliographic data supplied by the respective publishers.