IDEAS home Printed from https://ideas.repec.org/a/plo/pcbi00/1002213.html
   My bibliography  Save this article

Number and Size Distribution of Colorectal Adenomas under the Multistage Clonal Expansion Model of Cancer

Author

Listed:
  • Anup Dewanji
  • Jihyoun Jeon
  • Rafael Meza
  • E Georg Luebeck

Abstract

Colorectal cancer (CRC) is believed to arise from mutant stem cells in colonic crypts that undergo a well-characterized progression involving benign adenoma, the precursor to invasive carcinoma. Although a number of (epi)genetic events have been identified as drivers of this process, little is known about the dynamics involved in the stage-wise progression from the first appearance of an adenoma to its ultimate conversion to malignant cancer. By the time adenomas become endoscopically detectable (i.e., are in the range of 1–2 mm in diameter), adenomas are already comprised of hundreds of thousands of cells and may have been in existence for several years if not decades. Thus, a large fraction of adenomas may actually remain undetected during endoscopic screening and, at least in principle, could give rise to cancer before they are detected. It is therefore of importance to establish what fraction of adenomas is detectable, both as a function of when the colon is screened for neoplasia and as a function of the achievable detection limit. To this end, we have derived mathematical expressions for the detectable adenoma number and size distributions based on a recently developed stochastic model of CRC. Our results and illustrations using these expressions suggest (1) that screening efficacy is critically dependent on the detection threshold and implicit knowledge of the relevant stem cell fraction in adenomas, (2) that a large fraction of non-extinct adenomas remains likely undetected assuming plausible detection thresholds and cell division rates, and (3), under a realistic description of adenoma initiation, growth and progression to CRC, the empirical prevalence of adenomas is likely inflated with lesions that are not on the pathway to cancer. Author Summary: The adenomatous polyp (or adenoma) is considered the common precursor lesion for colorectal cancer (CRC). Although the natural history of adenomas is well-characterized in terms of their histopathology and (epi)genomic changes, little is known about their dynamics in the stage-wise progression from the first appearance of an adenoma to its conversion to malignant cancer. By the time adenomas become endoscopically detectable (i.e., are in the range of 1–2 mm in diameter), adenomas are already comprised of hundreds of thousands of cells. A large fraction of adenomas may therefore remain undetected during screening and, in spite of their small (subthreshold) size, could give rise to cancer prior to being detected. It is therefore of importance to establish what fraction of adenomas is detectable, both as a function of the age at screening for colorectal neoplasia and the size (threshold) above which adenomas can be detected reliably. Here we derive mathematical expressions for the distribution of adenoma number and sizes based on a recently developed stochastic model for CRC, which has previously been calibrated and validated against age-specific CRC incidence data.

Suggested Citation

  • Anup Dewanji & Jihyoun Jeon & Rafael Meza & E Georg Luebeck, 2011. "Number and Size Distribution of Colorectal Adenomas under the Multistage Clonal Expansion Model of Cancer," PLOS Computational Biology, Public Library of Science, vol. 7(10), pages 1-10, October.
  • Handle: RePEc:plo:pcbi00:1002213
    DOI: 10.1371/journal.pcbi.1002213
    as

    Download full text from publisher

    File URL: https://journals.plos.org/ploscompbiol/article?id=10.1371/journal.pcbi.1002213
    Download Restriction: no

    File URL: https://journals.plos.org/ploscompbiol/article/file?id=10.1371/journal.pcbi.1002213&type=printable
    Download Restriction: no

    File URL: https://libkey.io/10.1371/journal.pcbi.1002213?utm_source=ideas
    LibKey link: if access is restricted and if your library uses this service, LibKey will redirect you to where you can use your library subscription to access this item
    ---><---

    References listed on IDEAS

    as
    1. Tan, W. Y., 1986. "A stochastic Gompertz birth-death process," Statistics & Probability Letters, Elsevier, vol. 4(1), pages 25-28, January.
    2. Anup Dewanji & David J. Venzon & Suresh H. Moolgavkar, 1989. "A Stochastic Two‐Stage Model for Cancer Risk Assessment. II. The Number and Size of Premalignant Clones," Risk Analysis, John Wiley & Sons, vol. 9(2), pages 179-187, June.
    3. E. Georg Luebeck & Suresh H. Moolgavkar, 1991. "Stochastic Analysis of Intermediate Lesions in Carcinogenesis Experiments," Risk Analysis, John Wiley & Sons, vol. 11(1), pages 149-157, March.
    4. Nick Barker & Rachel A. Ridgway & Johan H. van Es & Marc van de Wetering & Harry Begthel & Maaike van den Born & Esther Danenberg & Alan R. Clarke & Owen J. Sansom & Hans Clevers, 2009. "Crypt stem cells as the cells-of-origin of intestinal cancer," Nature, Nature, vol. 457(7229), pages 608-611, January.
    Full references (including those not matched with items on IDEAS)

    Citations

    Citations are extracted by the CitEc Project, subscribe to its RSS feed for this item.
    as


    Cited by:

    1. Andrew F. Brouwer & Rafael Meza & Marisa C. Eisenberg, 2017. "A Systematic Approach to Determining the Identifiability of Multistage Carcinogenesis Models," Risk Analysis, John Wiley & Sons, vol. 37(7), pages 1375-1387, July.
    2. Brian M Lang & Jack Kuipers & Benjamin Misselwitz & Niko Beerenwinkel, 2020. "Predicting colorectal cancer risk from adenoma detection via a two-type branching process model," PLOS Computational Biology, Public Library of Science, vol. 16(2), pages 1-23, February.

    Most related items

    These are the items that most often cite the same works as this one and are cited by the same works as this one.
    1. Suresh H. Moolgavkar, 1994. "Biological Models of Carcinogenesis and Quantitative Cancer Risk Assessment," Risk Analysis, John Wiley & Sons, vol. 14(6), pages 879-882, December.
    2. Ewart Kuijk & Onno Kranenburg & Edwin Cuppen & Arne Van Hoeck, 2022. "Common anti-cancer therapies induce somatic mutations in stem cells of healthy tissue," Nature Communications, Nature, vol. 13(1), pages 1-10, December.
    3. Claire D. Sherman & Chnstopher J. Portier, 1998. "Eyes Closed: Simple, Intuitive, Statistically Sound, and Efficient Methods for Estimating Parameters of Clonal Growth Cancer Models," Risk Analysis, John Wiley & Sons, vol. 18(5), pages 529-534, October.
    4. Lana Kostic & Carly Leung & Katzrin Ahmad Murad & Snezhina Kancheva & Stefano Perna & Bernett Lee & Nick Barker, 2024. "Lgr5 marks stem/progenitor cells contributing to epithelial and muscle development in the mouse esophagus," Nature Communications, Nature, vol. 15(1), pages 1-17, December.
    5. David A. Kramer & Rory B. Conolly, 1997. "Computer Simulation of Clonal Growth Cancer Models. I. Parameter Estimation Using an Iterative Absolute Bisection Algorithm," Risk Analysis, John Wiley & Sons, vol. 17(1), pages 115-126, February.
    6. Gutiérrez-Sánchez, R. & Nafidi, A. & Pascual, A. & Ramos-Ábalos, E., 2011. "Three parameter gamma-type growth curve, using a stochastic gamma diffusion model: Computational statistical aspects and simulation," Mathematics and Computers in Simulation (MATCOM), Elsevier, vol. 82(2), pages 234-243.
    7. Giorno, Virginia & Nobile, Amelia G., 2022. "On some integral equations for the evaluation of first-passage-time densities of time-inhomogeneous birth-death processes," Applied Mathematics and Computation, Elsevier, vol. 422(C).
    8. Sahoo, S. & Sahoo, A. & Shearer, S.F.C., 2010. "Dynamics of Gompertzian tumour growth under environmental fluctuations," Physica A: Statistical Mechanics and its Applications, Elsevier, vol. 389(6), pages 1197-1207.
    9. Carlos Sebastian & Christina Ferrer & Maria Serra & Jee-Eun Choi & Nadia Ducano & Alessia Mira & Manasvi S. Shah & Sylwia A. Stopka & Andrew J. Perciaccante & Claudio Isella & Daniel Moya-Rull & Maria, 2022. "A non-dividing cell population with high pyruvate dehydrogenase kinase activity regulates metabolic heterogeneity and tumorigenesis in the intestine," Nature Communications, Nature, vol. 13(1), pages 1-13, December.
    10. Antonio Di Crescenzo & Paola Paraggio & Serena Spina, 2023. "Stochastic Growth Models for the Spreading of Fake News," Mathematics, MDPI, vol. 11(16), pages 1-23, August.
    11. Sefora Conti & Valeria Venturini & Adrià Cañellas-Socias & Carme Cortina & Juan F. Abenza & Camille Stephan-Otto Attolini & Emily Middendorp Guerra & Catherine K. Xu & Jia Hui Li & Leone Rossetti & Gi, 2024. "Membrane to cortex attachment determines different mechanical phenotypes in LGR5+ and LGR5- colorectal cancer cells," Nature Communications, Nature, vol. 15(1), pages 1-17, December.
    12. Kazuki Nakai & Hancheng Lin & Shotaro Yamano & Shinya Tanaka & Sho Kitamoto & Hitoshi Saitoh & Kenta Sakuma & Junpei Kurauchi & Eilma Akter & Masamitsu Konno & Kojiro Ishibashi & Ryo Kamata & Akihiro , 2023. "Wnt activation disturbs cell competition and causes diffuse invasion of transformed cells through NF-κB-MMP21 pathway," Nature Communications, Nature, vol. 14(1), pages 1-17, December.
    13. Antonio Di Crescenzo & Paola Paraggio, 2019. "Logistic Growth Described by Birth-Death and Diffusion Processes," Mathematics, MDPI, vol. 7(6), pages 1-28, May.
    14. Wolfgang F. Heidenreich, 2005. "Heterogeneity of Cancer Risk Due to Stochastic Effects," Risk Analysis, John Wiley & Sons, vol. 25(6), pages 1589-1594, December.
    15. Alfredo Erazo-Oliveras & Mónica Muñoz-Vega & Mohamed Mlih & Venkataramana Thiriveedi & Michael L. Salinas & Jaileen M. Rivera-Rodríguez & Eunjoo Kim & Rachel C. Wright & Xiaoli Wang & Kerstin K. Landr, 2023. "Mutant APC reshapes Wnt signaling plasma membrane nanodomains by altering cholesterol levels via oncogenic β-catenin," Nature Communications, Nature, vol. 14(1), pages 1-28, December.
    16. Shamir Montazid & Sheila Bandyopadhyay & Daniel W. Hart & Nan Gao & Brian Johnson & Sri G. Thrumurthy & Dustin J. Penn & Bettina Wernisch & Mukesh Bansal & Philipp M. Altrock & Fabian Rost & Patrycja , 2023. "Adult stem cell activity in naked mole rats for long-term tissue maintenance," Nature Communications, Nature, vol. 14(1), pages 1-20, December.

    More about this item

    Statistics

    Access and download statistics

    Corrections

    All material on this site has been provided by the respective publishers and authors. You can help correct errors and omissions. When requesting a correction, please mention this item's handle: RePEc:plo:pcbi00:1002213. See general information about how to correct material in RePEc.

    If you have authored this item and are not yet registered with RePEc, we encourage you to do it here. This allows to link your profile to this item. It also allows you to accept potential citations to this item that we are uncertain about.

    If CitEc recognized a bibliographic reference but did not link an item in RePEc to it, you can help with this form .

    If you know of missing items citing this one, you can help us creating those links by adding the relevant references in the same way as above, for each refering item. If you are a registered author of this item, you may also want to check the "citations" tab in your RePEc Author Service profile, as there may be some citations waiting for confirmation.

    For technical questions regarding this item, or to correct its authors, title, abstract, bibliographic or download information, contact: ploscompbiol (email available below). General contact details of provider: https://journals.plos.org/ploscompbiol/ .

    Please note that corrections may take a couple of weeks to filter through the various RePEc services.

    IDEAS is a RePEc service. RePEc uses bibliographic data supplied by the respective publishers.