Author
Listed:
- Heming Xing
- Paul D McDonagh
- Jadwiga Bienkowska
- Tanya Cashorali
- Karl Runge
- Robert E Miller
- Dave DeCaprio
- Bruce Church
- Ronenn Roubenoff
- Iya G Khalil
- John Carulli
Abstract
Tumor necrosis factor α (TNF-α) is a key regulator of inflammation and rheumatoid arthritis (RA). TNF-α blocker therapies can be very effective for a substantial number of patients, but fail to work in one third of patients who show no or minimal response. It is therefore necessary to discover new molecular intervention points involved in TNF-α blocker treatment of rheumatoid arthritis patients. We describe a data analysis strategy for predicting gene expression measures that are critical for rheumatoid arthritis using a combination of comprehensive genotyping, whole blood gene expression profiles and the component clinical measures of the arthritis Disease Activity Score 28 (DAS28) score. Two separate network ensembles, each comprised of 1024 networks, were built from molecular measures from subjects before and 14 weeks after treatment with TNF-α blocker. The network ensemble built from pre-treated data captures TNF-α dependent mechanistic information, while the ensemble built from data collected under TNF-α blocker treatment captures TNF-α independent mechanisms. In silico simulations of targeted, personalized perturbations of gene expression measures from both network ensembles identify transcripts in three broad categories. Firstly, 22 transcripts are identified to have new roles in modulating the DAS28 score; secondly, there are 6 transcripts that could be alternative targets to TNF-α blocker therapies, including CD86 - a component of the signaling axis targeted by Abatacept (CTLA4-Ig), and finally, 59 transcripts that are predicted to modulate the count of tender or swollen joints but not sufficiently enough to have a significant impact on DAS28.Author Summary: The collection and analysis of clinical data has played a key role in providing insights into the diagnosis, prognosis and treatment of disease. However, it is imperative that molecular and genetic data also be collected and integrated into the creation of network models, which capture underlying mechanisms of disease and can be interrogated to elucidate previously unknown biology. Bringing data from the clinic to the bench completes the cycle of translational research, which we demonstrate with this work. We built disease models from genetics, whole blood gene expression profiles and the component clinical measures of rheumatoid arthritis using a data-driven approach that leverages supercomputing. Genetic factors can be utilized as a source of perturbation to the system such that causal connections between genetics, molecular entities and clinical outcomes can be inferred. The existing TNF-α blocker treatments for rheumatoid arthritis are only effective for approximately 2/3 of the affected population. We identified novel therapeutic intervention points that may lead to the development of alternatives to TNF-α blocker treatments. We believe this approach will provide improved drug discovery programs, new insights into disease progression, increased drug efficacy and novel biomarkers for chronic and complex diseases.
Suggested Citation
Heming Xing & Paul D McDonagh & Jadwiga Bienkowska & Tanya Cashorali & Karl Runge & Robert E Miller & Dave DeCaprio & Bruce Church & Ronenn Roubenoff & Iya G Khalil & John Carulli, 2011.
"Causal Modeling Using Network Ensemble Simulations of Genetic and Gene Expression Data Predicts Genes Involved in Rheumatoid Arthritis,"
PLOS Computational Biology, Public Library of Science, vol. 7(3), pages 1-19, March.
Handle:
RePEc:plo:pcbi00:1001105
DOI: 10.1371/journal.pcbi.1001105
Download full text from publisher
Corrections
All material on this site has been provided by the respective publishers and authors. You can help correct errors and omissions. When requesting a correction, please mention this item's handle: RePEc:plo:pcbi00:1001105. See general information about how to correct material in RePEc.
If you have authored this item and are not yet registered with RePEc, we encourage you to do it here. This allows to link your profile to this item. It also allows you to accept potential citations to this item that we are uncertain about.
We have no bibliographic references for this item. You can help adding them by using this form .
If you know of missing items citing this one, you can help us creating those links by adding the relevant references in the same way as above, for each refering item. If you are a registered author of this item, you may also want to check the "citations" tab in your RePEc Author Service profile, as there may be some citations waiting for confirmation.
For technical questions regarding this item, or to correct its authors, title, abstract, bibliographic or download information, contact: ploscompbiol (email available below). General contact details of provider: https://journals.plos.org/ploscompbiol/ .
Please note that corrections may take a couple of weeks to filter through
the various RePEc services.