IDEAS home Printed from https://ideas.repec.org/a/plo/pcbi00/1001079.html
   My bibliography  Save this article

First Principles Modeling of Nonlinear Incidence Rates in Seasonal Epidemics

Author

Listed:
  • José M Ponciano
  • Marcos A Capistrán

Abstract

In this paper we used a general stochastic processes framework to derive from first principles the incidence rate function that characterizes epidemic models. We investigate a particular case, the Liu-Hethcote-van den Driessche's (LHD) incidence rate function, which results from modeling the number of successful transmission encounters as a pure birth process. This derivation also takes into account heterogeneity in the population with regard to the per individual transmission probability. We adjusted a deterministic SIRS model with both the classical and the LHD incidence rate functions to time series of the number of children infected with syncytial respiratory virus in Banjul, Gambia and Turku, Finland. We also adjusted a deterministic SEIR model with both incidence rate functions to the famous measles data sets from the UK cities of London and Birmingham. Two lines of evidence supported our conclusion that the model with the LHD incidence rate may very well be a better description of the seasonal epidemic processes studied here. First, our model was repeatedly selected as best according to two different information criteria and two different likelihood formulations. The second line of evidence is qualitative in nature: contrary to what the SIRS model with classical incidence rate predicts, the solution of the deterministic SIRS model with LHD incidence rate will reach either the disease free equilibrium or the endemic equilibrium depending on the initial conditions. These findings along with computer intensive simulations of the models' Poincaré map with environmental stochasticity contributed to attain a clear separation of the roles of the environmental forcing and the mechanics of the disease transmission in shaping seasonal epidemics dynamics.Author Summary: Nonlinearity in the infection incidence is one of the main components that shape seasonal epidemics. Here, we revisit classical incidence and propose a first principles derivation of the infection incidence rate. A qualitative analysis of the SIRS model with both the classical and the proposed incidence rate showed that the new model is physically more meaningful. We conducted a statistical analysis confronting the SIRS and SEIR models formulated using both incidence rate functions with four data sets of seasonal childhood epidemics. Two data sets were hospital records of cases of syncytial respiratory virus (RSV). The other two data sets were taken from the well-known UK measles epidemics database. We found that seasonal epidemics is better explained using our incidence rate model embedded in a Poisson sampling process. The results presented here are not by any means an exhaustive exploration of the interplay between nonlinear dynamics and stochasticity. Our results may be viewed as the starting point of multiple research avenues. Three such research topics could be: the first-principles derivation of non-linear incidence rate functions, the role of bistability and demographic stochasticity for disease persistence and the simulation of environmental and demographic stochasticity in the Poincaré map.

Suggested Citation

  • José M Ponciano & Marcos A Capistrán, 2011. "First Principles Modeling of Nonlinear Incidence Rates in Seasonal Epidemics," PLOS Computational Biology, Public Library of Science, vol. 7(2), pages 1-14, February.
  • Handle: RePEc:plo:pcbi00:1001079
    DOI: 10.1371/journal.pcbi.1001079
    as

    Download full text from publisher

    File URL: https://journals.plos.org/ploscompbiol/article?id=10.1371/journal.pcbi.1001079
    Download Restriction: no

    File URL: https://journals.plos.org/ploscompbiol/article/file?id=10.1371/journal.pcbi.1001079&type=printable
    Download Restriction: no

    File URL: https://libkey.io/10.1371/journal.pcbi.1001079?utm_source=ideas
    LibKey link: if access is restricted and if your library uses this service, LibKey will redirect you to where you can use your library subscription to access this item
    ---><---

    References listed on IDEAS

    as
    1. Lewi Stone & Ronen Olinky & Amit Huppert, 2007. "Seasonal dynamics of recurrent epidemics," Nature, Nature, vol. 446(7135), pages 533-536, March.
    Full references (including those not matched with items on IDEAS)

    Citations

    Citations are extracted by the CitEc Project, subscribe to its RSS feed for this item.
    as


    Cited by:

    1. Ross, J.V., 2012. "On parameter estimation in population models III: Time-inhomogeneous processes and observation error," Theoretical Population Biology, Elsevier, vol. 82(1), pages 1-17.

    Most related items

    These are the items that most often cite the same works as this one and are cited by the same works as this one.
    1. Pedro, S.A. & Rwezaura, H. & Mandipezar, A. & Tchuenche, J.M., 2021. "Qualitative Analysis of an influenza model with biomedical interventions," Chaos, Solitons & Fractals, Elsevier, vol. 146(C).
    2. Christensen, Claire & Albert, István & Grenfell, Bryan & Albert, Réka, 2010. "Disease dynamics in a dynamic social network," Physica A: Statistical Mechanics and its Applications, Elsevier, vol. 389(13), pages 2663-2674.
    3. Kaniadakis, G., 2024. "Novel class of susceptible–infectious–recovered models involving power-law interactions," Physica A: Statistical Mechanics and its Applications, Elsevier, vol. 633(C).
    4. Timothy R. Julian & Robert A. Canales & James O. Leckie & Alexandria B. Boehm, 2009. "A Model of Exposure to Rotavirus from Nondietary Ingestion Iterated by Simulated Intermittent Contacts," Risk Analysis, John Wiley & Sons, vol. 29(5), pages 617-632, May.
    5. Hu, Zengyun & Teng, Zhidong & Zhang, Tailei & Zhou, Qiming & Chen, Xi, 2017. "Globally asymptotically stable analysis in a discrete time eco-epidemiological system," Chaos, Solitons & Fractals, Elsevier, vol. 99(C), pages 20-31.
    6. Ross Sparks & Tim Keighley & David Muscatello, 2010. "Early warning CUSUM plans for surveillance of negative binomial daily disease counts," Journal of Applied Statistics, Taylor & Francis Journals, vol. 37(11), pages 1911-1929.
    7. Joseph Pateras & Ashwin Vaidya & Preetam Ghosh, 2022. "Network Thermodynamics-Based Scalable Compartmental Model for Multi-Strain Epidemics," Mathematics, MDPI, vol. 10(19), pages 1-19, September.
    8. Julia B Wenger & Elena N Naumova, 2010. "Seasonal Synchronization of Influenza in the United States Older Adult Population," PLOS ONE, Public Library of Science, vol. 5(4), pages 1-11, April.
    9. Sahoo, Banshidhar & Poria, Swarup, 2015. "Effects of allochthonous inputs in the control of infectious disease of prey," Chaos, Solitons & Fractals, Elsevier, vol. 75(C), pages 1-19.
    10. Baba, Isa Abdullahi & Hincal, Evren, 2018. "A model for influenza with vaccination and awareness," Chaos, Solitons & Fractals, Elsevier, vol. 106(C), pages 49-55.
    11. Steindorf, Vanessa & Srivastav, Akhil Kumar & Stollenwerk, Nico & Kooi, Bob W. & Aguiar, Maíra, 2022. "Modeling secondary infections with temporary immunity and disease enhancement factor: Mechanisms for complex dynamics in simple epidemiological models," Chaos, Solitons & Fractals, Elsevier, vol. 164(C).
    12. Sahoo, Banshidhar, 2015. "Role of additional food in eco-epidemiological system with disease in the prey," Applied Mathematics and Computation, Elsevier, vol. 259(C), pages 61-79.
    13. Michelangelo Bin & Peter Y K Cheung & Emanuele Crisostomi & Pietro Ferraro & Hugo Lhachemi & Roderick Murray-Smith & Connor Myant & Thomas Parisini & Robert Shorten & Sebastian Stein & Lewi Stone, 2021. "Post-lockdown abatement of COVID-19 by fast periodic switching," PLOS Computational Biology, Public Library of Science, vol. 17(1), pages 1-34, January.
    14. Steve E Bellan & Juliet R C Pulliam & James C Scott & Jonathan Dushoff & the MMED Organizing Committee, 2012. "How to Make Epidemiological Training Infectious," PLOS Biology, Public Library of Science, vol. 10(4), pages 1-8, April.
    15. Tao Chen & Tianmu Chen & Ruchun Liu & Cuiling Xu & Dayan Wang & Faming Chen & Wenfei Zhu & Xixing Zhang & Jing Yang & Lijie Wang & Zhi Xie & Yongkun Chen & Tian Bai & Yelan Li & Zhiyu Wang & Min Zhang, 2016. "Transmissibility of the Influenza Virus during Influenza Outbreaks and Related Asymptomatic Infection in Mainland China, 2005-2013," PLOS ONE, Public Library of Science, vol. 11(11), pages 1-14, November.

    More about this item

    Statistics

    Access and download statistics

    Corrections

    All material on this site has been provided by the respective publishers and authors. You can help correct errors and omissions. When requesting a correction, please mention this item's handle: RePEc:plo:pcbi00:1001079. See general information about how to correct material in RePEc.

    If you have authored this item and are not yet registered with RePEc, we encourage you to do it here. This allows to link your profile to this item. It also allows you to accept potential citations to this item that we are uncertain about.

    If CitEc recognized a bibliographic reference but did not link an item in RePEc to it, you can help with this form .

    If you know of missing items citing this one, you can help us creating those links by adding the relevant references in the same way as above, for each refering item. If you are a registered author of this item, you may also want to check the "citations" tab in your RePEc Author Service profile, as there may be some citations waiting for confirmation.

    For technical questions regarding this item, or to correct its authors, title, abstract, bibliographic or download information, contact: ploscompbiol (email available below). General contact details of provider: https://journals.plos.org/ploscompbiol/ .

    Please note that corrections may take a couple of weeks to filter through the various RePEc services.

    IDEAS is a RePEc service. RePEc uses bibliographic data supplied by the respective publishers.