Author
Listed:
- Tetsuya Shiraishi
- Shinako Matsuyama
- Hiroaki Kitano
Abstract
Protein–protein interaction and gene regulatory networks are likely to be locked in a state corresponding to a disease by the behavior of one or more bistable circuits exhibiting switch-like behavior. Sets of genes could be over-expressed or repressed when anomalies due to disease appear, and the circuits responsible for this over- or under-expression might persist for as long as the disease state continues. This paper shows how a large-scale analysis of network bistability for various human cancers can identify genes that can potentially serve as drug targets or diagnosis biomarkers.Author Summary: Since most disease states exhibit a certain level of resilience against therapeutic interventions, each disease state can be considered to be homeostatic to some extent. There must be one or more mechanisms that cause the gene-regulatory network to maintain a certain state, and one such mechanism is a bistable switch. In this work, bistable switch networks were constructed and their ON(upregulated)/OFF(downregulated) states were compared between human cancers and healthy control samples. Changes in the ON/OFF state with the progression of cancer were demonstrated. A series of genes that might serve as a drug target or diagnosis biomarker was identified. The approach presented here should provide useful insights into the states of biological networks, which may lead to the discovery of novel drug targets and therapeutic interventions.
Suggested Citation
Tetsuya Shiraishi & Shinako Matsuyama & Hiroaki Kitano, 2010.
"Large-Scale Analysis of Network Bistability for Human Cancers,"
PLOS Computational Biology, Public Library of Science, vol. 6(7), pages 1-12, July.
Handle:
RePEc:plo:pcbi00:1000851
DOI: 10.1371/journal.pcbi.1000851
Download full text from publisher
Corrections
All material on this site has been provided by the respective publishers and authors. You can help correct errors and omissions. When requesting a correction, please mention this item's handle: RePEc:plo:pcbi00:1000851. See general information about how to correct material in RePEc.
If you have authored this item and are not yet registered with RePEc, we encourage you to do it here. This allows to link your profile to this item. It also allows you to accept potential citations to this item that we are uncertain about.
We have no bibliographic references for this item. You can help adding them by using this form .
If you know of missing items citing this one, you can help us creating those links by adding the relevant references in the same way as above, for each refering item. If you are a registered author of this item, you may also want to check the "citations" tab in your RePEc Author Service profile, as there may be some citations waiting for confirmation.
For technical questions regarding this item, or to correct its authors, title, abstract, bibliographic or download information, contact: ploscompbiol (email available below). General contact details of provider: https://journals.plos.org/ploscompbiol/ .
Please note that corrections may take a couple of weeks to filter through
the various RePEc services.