IDEAS home Printed from https://ideas.repec.org/a/plo/pcbi00/1000616.html
   My bibliography  Save this article

Meta-analysis of Inter-species Liver Co-expression Networks Elucidates Traits Associated with Common Human Diseases

Author

Listed:
  • Kai Wang
  • Manikandan Narayanan
  • Hua Zhong
  • Martin Tompa
  • Eric E Schadt
  • Jun Zhu

Abstract

Co-expression networks are routinely used to study human diseases like obesity and diabetes. Systematic comparison of these networks between species has the potential to elucidate common mechanisms that are conserved between human and rodent species, as well as those that are species-specific characterizing evolutionary plasticity. We developed a semi-parametric meta-analysis approach for combining gene-gene co-expression relationships across expression profile datasets from multiple species. The simulation results showed that the semi-parametric method is robust against noise. When applied to human, mouse, and rat liver co-expression networks, our method out-performed existing methods in identifying gene pairs with coherent biological functions. We identified a network conserved across species that highlighted cell-cell signaling, cell-adhesion and sterol biosynthesis as main biological processes represented in genome-wide association study candidate gene sets for blood lipid levels. We further developed a heterogeneity statistic to test for network differences among multiple datasets, and demonstrated that genes with species-specific interactions tend to be under positive selection throughout evolution. Finally, we identified a human-specific sub-network regulated by RXRG, which has been validated to play a different role in hyperlipidemia and Type 2 diabetes between human and mouse. Taken together, our approach represents a novel step forward in integrating gene co-expression networks from multiple large scale datasets to leverage not only common information but also differences that are dataset-specific.Author Summary: Two important aspects of drug development are drug target identification and biomarker discovery for early disease detection, disease progression, drug efficacy and drug toxicity, etc. Recently, many single nucleotide polymorphisms (SNPs) associated with human diseases are discovered through large genome-wide association studies (GWAS). However, it is still largely unclear how these candidate SNPs may cause human diseases. The ultimate aim of this paper is to put these GWAS candidate SNPs and their associated genes into a network context to understand their mechanism of action in human diseases. In addition to large-scale human data sets that are often heterogeneous in terms of genetic and environmental factors, many high quality data sets in rodents exist and are frequently used to model human diseases. To leverage such information, we developed a method for combining and contrasting gene networks between human and rodents, specifically to elucidate how GWAS candidate SNPs may contribute to human diseases. By identifying mechanisms that are conserved or divergent between human and rodents, we can also predict which disease causal genes can be studied using rodent models and which ones may not.

Suggested Citation

  • Kai Wang & Manikandan Narayanan & Hua Zhong & Martin Tompa & Eric E Schadt & Jun Zhu, 2009. "Meta-analysis of Inter-species Liver Co-expression Networks Elucidates Traits Associated with Common Human Diseases," PLOS Computational Biology, Public Library of Science, vol. 5(12), pages 1-16, December.
  • Handle: RePEc:plo:pcbi00:1000616
    DOI: 10.1371/journal.pcbi.1000616
    as

    Download full text from publisher

    File URL: https://journals.plos.org/ploscompbiol/article?id=10.1371/journal.pcbi.1000616
    Download Restriction: no

    File URL: https://journals.plos.org/ploscompbiol/article/file?id=10.1371/journal.pcbi.1000616&type=printable
    Download Restriction: no

    File URL: https://libkey.io/10.1371/journal.pcbi.1000616?utm_source=ideas
    LibKey link: if access is restricted and if your library uses this service, LibKey will redirect you to where you can use your library subscription to access this item
    ---><---

    References listed on IDEAS

    as
    1. Hisashi Tanizaki, 1997. "Power comparison of non-parametric tests: Small-sample properties from Monte Carlo experiments," Journal of Applied Statistics, Taylor & Francis Journals, vol. 24(5), pages 603-632.
    2. Yanqing Chen & Jun Zhu & Pek Yee Lum & Xia Yang & Shirly Pinto & Douglas J. MacNeil & Chunsheng Zhang & John Lamb & Stephen Edwards & Solveig K. Sieberts & Amy Leonardson & Lawrence W. Castellini & Su, 2008. "Variations in DNA elucidate molecular networks that cause disease," Nature, Nature, vol. 452(7186), pages 429-435, March.
    3. Lars Juhl Jensen & Thomas Skøt Jensen & Ulrik de Lichtenberg & Søren Brunak & Peer Bork, 2006. "Co-evolution of transcriptional and post-translational cell-cycle regulation," Nature, Nature, vol. 443(7111), pages 594-597, October.
    Full references (including those not matched with items on IDEAS)

    Most related items

    These are the items that most often cite the same works as this one and are cited by the same works as this one.
    1. Nadine Chlass & Jens J. Krueger, 2007. "Small Sample Properties of the Wilcoxon Signed Rank Test with Discontinuous and Dependent Observations," Jena Economics Research Papers 2007-032, Friedrich-Schiller-University Jena.
    2. Kateřina Macháčová & Hana Vaňková & Iva Holmerová & Inna Čábelková & Ladislav Volicer, 2018. "Ratings of activities of daily living in nursing home residents: comparison of self- and proxy ratings with actual performance and the impact of cognitive status," European Journal of Ageing, Springer, vol. 15(4), pages 349-358, December.
    3. Emma Pierson & the GTEx Consortium & Daphne Koller & Alexis Battle & Sara Mostafavi, 2015. "Sharing and Specificity of Co-expression Networks across 35 Human Tissues," PLOS Computational Biology, Public Library of Science, vol. 11(5), pages 1-19, May.
    4. Won Jun Lee & Sang Cheol Kim & Jung-Ho Yoon & Sang Jun Yoon & Johan Lim & You-Sun Kim & Sung Won Kwon & Jeong Hill Park, 2016. "Meta-Analysis of Tumor Stem-Like Breast Cancer Cells Using Gene Set and Network Analysis," PLOS ONE, Public Library of Science, vol. 11(2), pages 1-20, February.
    5. Devansh Pandey & Mariana Harris & Nandita R. Garud & Vagheesh M. Narasimhan, 2024. "Leveraging ancient DNA to uncover signals of natural selection in Europe lost due to admixture or drift," Nature Communications, Nature, vol. 15(1), pages 1-13, December.
    6. Valur Emilsson & Elias F. Gudmundsson & Thorarinn Jonmundsson & Brynjolfur G. Jonsson & Michael Twarog & Valborg Gudmundsdottir & Zhiguang Li & Nancy Finkel & Stephen Poor & Xin Liu & Robert Esterberg, 2022. "A proteogenomic signature of age-related macular degeneration in blood," Nature Communications, Nature, vol. 13(1), pages 1-15, December.
    7. Benjamin A Logsdon & Jason Mezey, 2010. "Gene Expression Network Reconstruction by Convex Feature Selection when Incorporating Genetic Perturbations," PLOS Computational Biology, Public Library of Science, vol. 6(12), pages 1-13, December.
    8. Markus Neuh�user, 2015. "Combining the t test and Wilcoxon's rank-sum test," Journal of Applied Statistics, Taylor & Francis Journals, vol. 42(12), pages 2769-2775, December.
    9. Jin Hyun Ju & Sushila A Shenoy & Ronald G Crystal & Jason G Mezey, 2017. "An independent component analysis confounding factor correction framework for identifying broad impact expression quantitative trait loci," PLOS Computational Biology, Public Library of Science, vol. 13(5), pages 1-26, May.
    10. Lina Zgaga & Felix Agakov & Evropi Theodoratou & Susan M Farrington & Albert Tenesa & Malcolm G Dunlop & Paul McKeigue & Harry Campbell, 2013. "Model Selection Approach Suggests Causal Association between 25-Hydroxyvitamin D and Colorectal Cancer," PLOS ONE, Public Library of Science, vol. 8(5), pages 1-11, May.
    11. Eric P Xing & Ross E Curtis & Georg Schoenherr & Seunghak Lee & Junming Yin & Kriti Puniyani & Wei Wu & Peter Kinnaird, 2014. "GWAS in a Box: Statistical and Visual Analytics of Structured Associations via GenAMap," PLOS ONE, Public Library of Science, vol. 9(6), pages 1-19, June.
    12. Citlali Calderon & Lorena Carrete & Jorge Vera-Martínez & María Esther Gloria-Quintero & María del Socorro Romero-Figueroa, 2021. "A Social Marketing Intervention to Improve Treatment Adherence in Patients with Type 1 Diabetes," IJERPH, MDPI, vol. 18(7), pages 1-14, March.
    13. Oliver Stegle & Leopold Parts & Richard Durbin & John Winn, 2010. "A Bayesian Framework to Account for Complex Non-Genetic Factors in Gene Expression Levels Greatly Increases Power in eQTL Studies," PLOS Computational Biology, Public Library of Science, vol. 6(5), pages 1-11, May.
    14. Hui-Min Wang & Ching-Lin Hsiao & Ai-Ru Hsieh & Ying-Chao Lin & Cathy S J Fann, 2012. "Constructing Endophenotypes of Complex Diseases Using Non-Negative Matrix Factorization and Adjusted Rand Index," PLOS ONE, Public Library of Science, vol. 7(7), pages 1-12, July.
    15. Serguei Rouzinov & André Berchtold, 2022. "Regression-Based Approach to Test Missing Data Mechanisms," Data, MDPI, vol. 7(2), pages 1-28, January.
    16. Ville-Petteri Mäkinen & Mete Civelek & Qingying Meng & Bin Zhang & Jun Zhu & Candace Levian & Tianxiao Huan & Ayellet V Segrè & Sujoy Ghosh & Juan Vivar & Majid Nikpay & Alexandre F R Stewart & Christ, 2014. "Integrative Genomics Reveals Novel Molecular Pathways and Gene Networks for Coronary Artery Disease," PLOS Genetics, Public Library of Science, vol. 10(7), pages 1-14, July.
    17. Michael J McGeachie & Hsun-Hsien Chang & Scott T Weiss, 2014. "CGBayesNets: Conditional Gaussian Bayesian Network Learning and Inference with Mixed Discrete and Continuous Data," PLOS Computational Biology, Public Library of Science, vol. 10(6), pages 1-7, June.
    18. Josine L Min & Jennifer M Taylor & J Brent Richards & Tim Watts & Fredrik H Pettersson & John Broxholme & Kourosh R Ahmadi & Gabriela L Surdulescu & Ernesto Lowy & Christian Gieger & Chris Newton-Cheh, 2011. "The Use of Genome-Wide eQTL Associations in Lymphoblastoid Cell Lines to Identify Novel Genetic Pathways Involved in Complex Traits," PLOS ONE, Public Library of Science, vol. 6(7), pages 1-14, July.
    19. Eric A Stone & Julien F Ayroles, 2009. "Modulated Modularity Clustering as an Exploratory Tool for Functional Genomic Inference," PLOS Genetics, Public Library of Science, vol. 5(5), pages 1-13, May.
    20. Wei Zhang & Jun Zhu & Eric E Schadt & Jun S Liu, 2010. "A Bayesian Partition Method for Detecting Pleiotropic and Epistatic eQTL Modules," PLOS Computational Biology, Public Library of Science, vol. 6(1), pages 1-10, January.

    More about this item

    Statistics

    Access and download statistics

    Corrections

    All material on this site has been provided by the respective publishers and authors. You can help correct errors and omissions. When requesting a correction, please mention this item's handle: RePEc:plo:pcbi00:1000616. See general information about how to correct material in RePEc.

    If you have authored this item and are not yet registered with RePEc, we encourage you to do it here. This allows to link your profile to this item. It also allows you to accept potential citations to this item that we are uncertain about.

    If CitEc recognized a bibliographic reference but did not link an item in RePEc to it, you can help with this form .

    If you know of missing items citing this one, you can help us creating those links by adding the relevant references in the same way as above, for each refering item. If you are a registered author of this item, you may also want to check the "citations" tab in your RePEc Author Service profile, as there may be some citations waiting for confirmation.

    For technical questions regarding this item, or to correct its authors, title, abstract, bibliographic or download information, contact: ploscompbiol (email available below). General contact details of provider: https://journals.plos.org/ploscompbiol/ .

    Please note that corrections may take a couple of weeks to filter through the various RePEc services.

    IDEAS is a RePEc service. RePEc uses bibliographic data supplied by the respective publishers.