IDEAS home Printed from https://ideas.repec.org/a/plo/pcbi00/1000402.html
   My bibliography  Save this article

Active Dendrites Enhance Neuronal Dynamic Range

Author

Listed:
  • Leonardo L Gollo
  • Osame Kinouchi
  • Mauro Copelli

Abstract

Since the first experimental evidences of active conductances in dendrites, most neurons have been shown to exhibit dendritic excitability through the expression of a variety of voltage-gated ion channels. However, despite experimental and theoretical efforts undertaken in the past decades, the role of this excitability for some kind of dendritic computation has remained elusive. Here we show that, owing to very general properties of excitable media, the average output of a model of an active dendritic tree is a highly non-linear function of its afferent rate, attaining extremely large dynamic ranges (above 50 dB). Moreover, the model yields double-sigmoid response functions as experimentally observed in retinal ganglion cells. We claim that enhancement of dynamic range is the primary functional role of active dendritic conductances. We predict that neurons with larger dendritic trees should have larger dynamic range and that blocking of active conductances should lead to a decrease in dynamic range.Author Summary: Most neurons present cellular tree-like extensions known as dendrites, which receive input signals from synapses with other cells. Some neurons have very large and impressive dendritic arbors. What is the function of such elaborate and costly structures? The functional role of dendrites is not obvious because, if dendrites were an electrical passive medium, then signals from their periphery could not influence the neuron output activity. Dendrites, however, are not passive, but rather active media that amplify and support pulses (dendritic spikes). These voltage pulses do not simply add but can also annihilate each other when they collide. To understand the net effect of the complex interactions among dendritic spikes under massive synaptic input, here we examine a computational model of excitable dendritic trees. We show that, in contrast to passive trees, they have a very large dynamic range, which implies a greater capacity of the neuron to distinguish among the widely different intensities of input which it receives. Our results provide an explanation to the concentration invariance property observed in olfactory processing, due to the very similar response to different inputs. In addition, our modeling approach also suggests a microscopic neural basis for the century old psychophysical laws.

Suggested Citation

  • Leonardo L Gollo & Osame Kinouchi & Mauro Copelli, 2009. "Active Dendrites Enhance Neuronal Dynamic Range," PLOS Computational Biology, Public Library of Science, vol. 5(6), pages 1-12, June.
  • Handle: RePEc:plo:pcbi00:1000402
    DOI: 10.1371/journal.pcbi.1000402
    as

    Download full text from publisher

    File URL: https://journals.plos.org/ploscompbiol/article?id=10.1371/journal.pcbi.1000402
    Download Restriction: no

    File URL: https://journals.plos.org/ploscompbiol/article/file?id=10.1371/journal.pcbi.1000402&type=printable
    Download Restriction: no

    File URL: https://libkey.io/10.1371/journal.pcbi.1000402?utm_source=ideas
    LibKey link: if access is restricted and if your library uses this service, LibKey will redirect you to where you can use your library subscription to access this item
    ---><---

    References listed on IDEAS

    as
    1. Nace L. Golding & Nathan P. Staff & Nelson Spruston, 2002. "Dendritic spikes as a mechanism for cooperative long-term potentiation," Nature, Nature, vol. 418(6895), pages 326-331, July.
    Full references (including those not matched with items on IDEAS)

    Most related items

    These are the items that most often cite the same works as this one and are cited by the same works as this one.
    1. Matteo Saponati & Martin Vinck, 2023. "Sequence anticipation and spike-timing-dependent plasticity emerge from a predictive learning rule," Nature Communications, Nature, vol. 14(1), pages 1-13, December.
    2. Balázs Ujfalussy & Tamás Kiss & Péter Érdi, 2009. "Parallel Computational Subunits in Dentate Granule Cells Generate Multiple Place Fields," PLOS Computational Biology, Public Library of Science, vol. 5(9), pages 1-16, September.
    3. Jung Ho Hyun & Kenichiro Nagahama & Ho Namkung & Neymi Mignocchi & Seung-Eon Roh & Patrick Hannan & Sarah Krüssel & Chuljung Kwak & Abigail McElroy & Bian Liu & Mingguang Cui & Seunghwan Lee & Dongmin, 2022. "Tagging active neurons by soma-targeted Cal-Light," Nature Communications, Nature, vol. 13(1), pages 1-16, December.
    4. Pojeong Park & J. David Wong-Campos & Daniel G. Itkis & Byung Hun Lee & Yitong Qi & Hunter C. Davis & Benjamin Antin & Amol Pasarkar & Jonathan B. Grimm & Sarah E. Plutkis & Katie L. Holland & Liam Pa, 2025. "Dendritic excitations govern back-propagation via a spike-rate accelerometer," Nature Communications, Nature, vol. 16(1), pages 1-20, December.
    5. Yonatan Loewenstein, 2008. "Robustness of Learning That Is Based on Covariance-Driven Synaptic Plasticity," PLOS Computational Biology, Public Library of Science, vol. 4(3), pages 1-10, March.
    6. Jason J. Moore & Shannon K. Rashid & Emmett Bicker & Cara D. Johnson & Naomi Codrington & Dmitri B. Chklovskii & Jayeeta Basu, 2025. "Sub-cellular population imaging tools reveal stable apical dendrites in hippocampal area CA3," Nature Communications, Nature, vol. 16(1), pages 1-21, December.

    More about this item

    Statistics

    Access and download statistics

    Corrections

    All material on this site has been provided by the respective publishers and authors. You can help correct errors and omissions. When requesting a correction, please mention this item's handle: RePEc:plo:pcbi00:1000402. See general information about how to correct material in RePEc.

    If you have authored this item and are not yet registered with RePEc, we encourage you to do it here. This allows to link your profile to this item. It also allows you to accept potential citations to this item that we are uncertain about.

    If CitEc recognized a bibliographic reference but did not link an item in RePEc to it, you can help with this form .

    If you know of missing items citing this one, you can help us creating those links by adding the relevant references in the same way as above, for each refering item. If you are a registered author of this item, you may also want to check the "citations" tab in your RePEc Author Service profile, as there may be some citations waiting for confirmation.

    For technical questions regarding this item, or to correct its authors, title, abstract, bibliographic or download information, contact: ploscompbiol (email available below). General contact details of provider: https://journals.plos.org/ploscompbiol/ .

    Please note that corrections may take a couple of weeks to filter through the various RePEc services.

    IDEAS is a RePEc service. RePEc uses bibliographic data supplied by the respective publishers.